246 research outputs found

    Synthesization and reconstruction of 3D faces by deep neural networks

    Get PDF
    The past few decades have witnessed substantial progress towards 3D facial modelling and reconstruction as it is high importance for many computer vision and graphics applications including Augmented/Virtual Reality (AR/VR), computer games, movie post-production, image/video editing, medical applications, etc. In the traditional approaches, facial texture and shape are represented as triangle mesh that can cover identity and expression variation with non-rigid deformation. A dataset of 3D face scans is then densely registered into a common topology in order to construct a linear statistical model. Such models are called 3D Morphable Models (3DMMs) and can be used for 3D face synthesization or reconstruction by a single or few 2D face images. The works presented in this thesis focus on the modernization of these traditional techniques in the light of recent advances of deep learning and thanks to the availability of large-scale datasets. Ever since the introduction of 3DMMs by over two decades, there has been a lot of progress on it and they are still considered as one of the best methodologies to model 3D faces. Nevertheless, there are still several aspects of it that need to be upgraded to the "deep era". Firstly, the conventional 3DMMs are built by linear statistical approaches such as Principal Component Analysis (PCA) which omits high-frequency information by its nature. While this does not curtail shape, which is often smooth in the original data, texture models are heavily afflicted by losing high-frequency details and photorealism. Secondly, the existing 3DMM fitting approaches rely on very primitive (i.e. RGB values, sparse landmarks) or hand-crafted features (i.e. HOG, SIFT) as supervision that are sensitive to "in-the-wild" images (i.e. lighting, pose, occlusion), or somewhat missing identity/expression resemblance with the target image. Finally, shape, texture, and expression modalities are separately modelled by ignoring the correlation among them, placing a fundamental limit to the synthesization of semantically meaningful 3D faces. Moreover, photorealistic 3D face synthesis has not been studied thoroughly in the literature. This thesis attempts to address the above-mentioned issues by harnessing the power of deep neural network and generative adversarial networks as explained below: Due to the linear texture models, many of the state-of-the-art methods are still not capable of reconstructing facial textures with high-frequency details. For this, we take a radically different approach and build a high-quality texture model by Generative Adversarial Networks (GANs) that preserves details. That is, we utilize GANs to train a very powerful generator of facial texture in the UV space. And then show that it is possible to employ this generator network as a statistical texture prior to 3DMM fitting. The resulting texture reconstructions are plausible and photorealistic as GANs are faithful to the real-data distribution in both low- and high- frequency domains. Then, we revisit the conventional 3DMM fitting approaches making use of non-linear optimization to find the optimal latent parameters that best reconstruct the test image but under a new perspective. We propose to optimize the parameters with the supervision of pretrained deep identity features through our end-to-end differentiable framework. In order to be robust towards initialization and expedite the fitting process, we also propose a novel self-supervised regression-based approach. We demonstrate excellent 3D face reconstructions that are photorealistic and identity preserving and achieve for the first time, to the best of our knowledge, facial texture reconstruction with high-frequency details. In order to extend the non-linear texture model for photo-realistic 3D face synthesis, we present a methodology that generates high-quality texture, shape, and normals jointly. To do so, we propose a novel GAN that can generate data from different modalities while exploiting their correlations. Furthermore, we demonstrate how we can condition the generation on the expression and create faces with various facial expressions. Additionally, we study another approach for photo-realistic face synthesis by 3D guidance. This study proposes to generate 3D faces by linear 3DMM and then augment their 2D rendering by an image-to-image translation network to the photorealistic face domain. Both works demonstrate excellent photorealistic face synthesis and show that the generated faces are improving face recognition benchmarks as synthetic training data. Finally, we study expression reconstruction for personalized 3D face models where we improve generalization and robustness of expression encoding. First, we propose a 3D augmentation approach on 2D head-mounted camera images to increase robustness to perspective changes. And, we also propose to train generic expression encoder network by populating the number of identities with a novel multi-id personalized model training architecture in a self-supervised manner. Both approaches show promising results in both qualitative and quantitative experiments.Open Acces

    Neural 3D Morphable Models: Spiral Convolutional Networks for 3D Shape Representation Learning and Generation

    Full text link
    Generative models for 3D geometric data arise in many important applications in 3D computer vision and graphics. In this paper, we focus on 3D deformable shapes that share a common topological structure, such as human faces and bodies. Morphable Models and their variants, despite their linear formulation, have been widely used for shape representation, while most of the recently proposed nonlinear approaches resort to intermediate representations, such as 3D voxel grids or 2D views. In this work, we introduce a novel graph convolutional operator, acting directly on the 3D mesh, that explicitly models the inductive bias of the fixed underlying graph. This is achieved by enforcing consistent local orderings of the vertices of the graph, through the spiral operator, thus breaking the permutation invariance property that is adopted by all the prior work on Graph Neural Networks. Our operator comes by construction with desirable properties (anisotropic, topology-aware, lightweight, easy-to-optimise), and by using it as a building block for traditional deep generative architectures, we demonstrate state-of-the-art results on a variety of 3D shape datasets compared to the linear Morphable Model and other graph convolutional operators.Comment: to appear at ICCV 201

    Synthesizing Coupled 3D Face Modalities by Trunk-Branch Generative Adversarial Networks

    Full text link
    Generating realistic 3D faces is of high importance for computer graphics and computer vision applications. Generally, research on 3D face generation revolves around linear statistical models of the facial surface. Nevertheless, these models cannot represent faithfully either the facial texture or the normals of the face, which are very crucial for photo-realistic face synthesis. Recently, it was demonstrated that Generative Adversarial Networks (GANs) can be used for generating high-quality textures of faces. Nevertheless, the generation process either omits the geometry and normals, or independent processes are used to produce 3D shape information. In this paper, we present the first methodology that generates high-quality texture, shape, and normals jointly, which can be used for photo-realistic synthesis. To do so, we propose a novel GAN that can generate data from different modalities while exploiting their correlations. Furthermore, we demonstrate how we can condition the generation on the expression and create faces with various facial expressions. The qualitative results shown in this paper are compressed due to size limitations, full-resolution results and the accompanying video can be found in the supplementary documents. The code and models are available at the project page: https://github.com/barisgecer/TBGAN.Comment: Check project page: https://github.com/barisgecer/TBGAN for the full resolution results and the accompanying vide

    Synthesizing Normalized Faces from Facial Identity Features

    Full text link
    We present a method for synthesizing a frontal, neutral-expression image of a person's face given an input face photograph. This is achieved by learning to generate facial landmarks and textures from features extracted from a facial-recognition network. Unlike previous approaches, our encoding feature vector is largely invariant to lighting, pose, and facial expression. Exploiting this invariance, we train our decoder network using only frontal, neutral-expression photographs. Since these photographs are well aligned, we can decompose them into a sparse set of landmark points and aligned texture maps. The decoder then predicts landmarks and textures independently and combines them using a differentiable image warping operation. The resulting images can be used for a number of applications, such as analyzing facial attributes, exposure and white balance adjustment, or creating a 3-D avatar

    A Decoupled 3D Facial Shape Model by Adversarial Training

    Get PDF
    Data-driven generative 3D face models are used to compactly encode facial shape data into meaningful parametric representations. A desirable property of these models is their ability to effectively decouple natural sources of variation, in particular identity and expression. While factorized representations have been proposed for that purpose, they are still limited in the variability they can capture and may present modeling artifacts when applied to tasks such as expression transfer. In this work, we explore a new direction with Generative Adversarial Networks and show that they contribute to better face modeling performances, especially in decoupling natural factors, while also achieving more diverse samples. To train the model we introduce a novel architecture that combines a 3D generator with a 2D discriminator that leverages conventional CNNs, where the two components are bridged by a geometry mapping layer. We further present a training scheme, based on auxiliary classifiers, to explicitly disentangle identity and expression attributes. Through quantitative and qualitative results on standard face datasets, we illustrate the benefits of our model and demonstrate that it outperforms competing state of the art methods in terms of decoupling and diversity.Comment: camera-ready version for ICCV'1
    • …
    corecore