1,669 research outputs found

    Automatic alignment for three-dimensional tomographic reconstruction

    Get PDF
    In tomographic reconstruction, the goal is to reconstruct an unknown object from a collection of line integrals. Given a complete sampling of such line integrals for various angles and directions, explicit inverse formulas exist to reconstruct the object. Given noisy and incomplete measurements, the inverse problem is typically solved through a regularized least-squares approach. A challenge for both approaches is that in practice the exact directions and offsets of the x-rays are only known approximately due to, e.g. calibration errors. Such errors lead to artifacts in the reconstructed image. In the case of sufficient sampling and geometrically simple misalignment, the measurements can be corrected by exploiting so-called consistency conditions. In other cases, such conditions may not apply and we have to solve an additional inverse problem to retrieve the angles and shifts. In this paper we propose a general algorithmic framework for retrieving these parameters in conjunction with an algebraic reconstruction technique. The proposed approach is illustrated by numerical examples for both simulated data and an electron tomography dataset

    Lose The Views: Limited Angle CT Reconstruction via Implicit Sinogram Completion

    Full text link
    Computed Tomography (CT) reconstruction is a fundamental component to a wide variety of applications ranging from security, to healthcare. The classical techniques require measuring projections, called sinograms, from a full 180^\circ view of the object. This is impractical in a limited angle scenario, when the viewing angle is less than 180^\circ, which can occur due to different factors including restrictions on scanning time, limited flexibility of scanner rotation, etc. The sinograms obtained as a result, cause existing techniques to produce highly artifact-laden reconstructions. In this paper, we propose to address this problem through implicit sinogram completion, on a challenging real world dataset containing scans of common checked-in luggage. We propose a system, consisting of 1D and 2D convolutional neural networks, that operates on a limited angle sinogram to directly produce the best estimate of a reconstruction. Next, we use the x-ray transform on this reconstruction to obtain a "completed" sinogram, as if it came from a full 180^\circ measurement. We feed this to standard analytical and iterative reconstruction techniques to obtain the final reconstruction. We show with extensive experimentation that this combined strategy outperforms many competitive baselines. We also propose a measure of confidence for the reconstruction that enables a practitioner to gauge the reliability of a prediction made by our network. We show that this measure is a strong indicator of quality as measured by the PSNR, while not requiring ground truth at test time. Finally, using a segmentation experiment, we show that our reconstruction preserves the 3D structure of objects effectively.Comment: Spotlight presentation at CVPR 201

    Mapping Atomic Motions with Electrons: Toward the Quantum Limit to Imaging Chemistry

    Get PDF
    Recent advances in ultrafast electron and X-ray diffraction have pushed imaging of structural dynamics into the femtosecond time domain, that is, the fundamental time scale of atomic motion. New physics can be reached beyond the scope of traditional diffraction or reciprocal space imaging. By exploiting the high time resolution, it has been possible to directly observe the collapse of nearly innumerable possible nuclear motions to a few key reaction modes that direct chemistry. It is this reduction in dimensionality in the transition state region that makes chemistry a transferable concept, with the same class of reactions being applicable to synthetic strategies to nearly arbitrary levels of complexity. The ability to image the underlying key reaction modes has been achieved with resolution to relative changes in atomic positions to better than 0.01 Å, that is, comparable to thermal motions. We have effectively reached the fundamental space-time limit with respect to the reaction energetics and imaging the acting forces. In the process of ensemble measured structural changes, we have missed the quantum aspects of chemistry. This perspective reviews the current state of the art in imaging chemistry in action and poses the challenge to access quantum information on the dynamics. There is the possibility with the present ultrabright electron and X-ray sources, at least in principle, to do tomographic reconstruction of quantum states in the form of a Wigner function and density matrix for the vibrational, rotational, and electronic degrees of freedom. Accessing this quantum information constitutes the ultimate demand on the spatial and temporal resolution of reciprocal space imaging of chemistry. Given the much shorter wavelength and corresponding intrinsically higher spatial resolution of current electron sources over X-rays, this Perspective will focus on electrons to provide an overview of the challenge on both the theory and the experimental fronts to extract the quantum aspects of molecular dynamics

    Image-based Control and Automation of High-speed X-ray Imaging Experiments

    Get PDF
    Moderne Röntgenbildgebung gibt Aufschluss über die innere Struktur von Objekten aus den verschiedensten Materialien. Der Erfolg solcher Messungen hängt dabei entscheidend von einer geeigneten Wahl der Aufnahmebedingungen ab, von der mechanischen Instrumentierung und von den Eigenschaften der Probe oder des untersuchten Prozesses selbst. Bisher gibt es kein bekanntes Verfahren für autonome Datenakquise, welches auch für sehr verschiedene Röntgenbildgebungsexperimenten die Steuerung über bildbasiertes Feedback erlaubt. Die vorliegende Arbeit setzt sich als Ziel, diese Lücke zu schließen, indem gezielt die hierbei auftretenden Probleme angegangen und gelöst werden: die Auswahl der experimentellen Startparameter, eine schnelle Verarbeitung der aufgenommenen Daten und ein automatisches Feedback zur Korrektur der laufenden Messprozedur. Um die am besten geeigneten experimentellen Bedingungen zu bestimmen, gehen wir von den Grundlagen der Bildentstehung aus und entwickeln ein Framework für dessen Simulation. Dieses ermöglicht uns eine große Bandbreite an virtuellen Röntgenbildgebungsexperimenten durchzuführen, wobei die entscheidenden physikalischen Prozesse auf dem Weg der Röntgenstrahlung von der Quelle bis zum Detektor berücksichtigt werden. Darüber hinaus betrachten wir verschiedene Probenformen und bewegungen, was uns die Simulation von Experimenten wie etwa 4D (zeitaufgelöster) Tomographie ermöglicht. Außerdem entwickeln wir eine autonome Prozedur für die Datenakquise, welches die Startbedingungen des Versuchs dann während der schon laufenden Messung auf Basis schneller Bildanalyse das nachjustiert und auch andere Parameter des Experiments steuern kann. Besonderes Augenmerk legen wir hier auf Hochgeschwindigkeitsexperimente, welche hohen Anforderungen an die Geschwindigkeit der Datenverarbeitung stellen, vor allem wenn die Steuerung auf rechenintensiven Algorithmen wie etwa für die tomographische 3D Rekonstruktion der Probe basiert. Um hierzu einen effizienten Algorithmus zu implementieren, verwenden wir ein hochgradig parallelisiertes Framework. Dessen Ausgabe kann dann zur Berechnung verschiedener Bildmetriken verwendet werden, um quantitative Information über die aufgenommenen Daten zu erhalten. Diese bilden die Grundlage zur Entscheidungsfindung in einem geschlossenen Regelkreis, in dem die Hardware für die Datenakquise betrieben wird. Die Genauigkeit des entwickelten Simulationsframeworks zeigen wir, indem wir virtuelle und reale Experimente vergleichen, die auf Gitterinterferometrie basieren und damit spezielle optische Elemente für die Kontrastbildung einsetzen. Außerdem untersuchen wir im Detail den Einfluss der Bildgebungsbedingungen auf die Genauigkeit des implementierten Algorithmus für gefilterte Rückprojektion, und inwiefern unter dessen Berücksichtigung eine Optimierung der experimentellen Bedingungen möglich ist. Wir demonstrieren die Fähigkeiten des von uns entwickelten Systems zur autonomen Datenakquise anhand eines in-situ Tomographieexperiments, bei dem es basierend auf 3D-Rekonstruktion die Framerate der Kamera optimiert und damit sicherstellt, dass die aufgezeichneten Datensätze ohne Artefakte rekonstruiert werden können. Außerdem nutzen wir unser System, um ein Tomographieexperiment mit hohem Probendurchsatz durchzuführen, bei dem viele ähnliche biologische Proben gescannt werde: Für jede davon wird automatisch die tomographische Rotationsachse bestimmt und schließlich zur Sicherstellung der Qualität schon während der Messung ein komplettes 3D Volumen rekonstruiert. Darüber hinaus führen wir ein in-situ Laminographieexperiment durch, welches die Rissbildung in einer Materialprobe untersucht. Hierbei führt unser System die Datenakquise durch und rekonstruiert einen zentral gelegenen Querschnitt durch die Probe, um dessen korrekte Ausrichtung und die Qualität der Daten sicherzustellen. Unsere Arbeit ermöglicht - basierend auf hochgenauen Simulationen - die Wahl der am besten geeigneten Startbedingungen eines Experiments, deren Feinabstimmung während eines realen Experiments und schließlich dessen automatische Steuerung basierend auf schneller Analyse der gerade aufgezeichneten Daten. Ein solches Vorgehen bei der Datenakquise ermöglicht neuartige in-vivo und in-situ Hochgeschwindigkeitsexperimente, die bedingt durch die hohen Datenraten nicht mehr von einer menschlichen Bedienperson gehandhabt werden könnten

    Novel computational methods for in vitro and in situ cryo-electron microscopy

    Get PDF
    Over the past decade, advances in microscope hardware and image data processing algorithms have made cryo-electron microscopy (cryo-EM) a dominant technique for protein structure determination. Near-atomic resolution can now be obtained for many challenging in vitro samples using single-particle analysis (SPA), while sub-tomogram averaging (STA) can obtain sub-nanometer resolution for large protein complexes in a crowded cellular environment. Reaching high resolution requires large amounts of im-age data. Modern transmission electron microscopes (TEMs) automate the acquisition process and can acquire thousands of micrographs or hundreds of tomographic tilt se-ries over several days without intervention. In a first step, the data must be pre-processed: Micrographs acquired as movies are cor-rected for stage and beam-induced motion. For tilt series, additional alignment of all micrographs in 3D is performed using gold- or patch-based fiducials. Parameters of the contrast-transfer function (CTF) are estimated to enable its reversal during SPA refine-ment. Finally, individual protein particles must be located and extracted from the aligned micrographs. Current pre-processing algorithms, especially those for particle picking, are not robust enough to enable fully unsupervised operation. Thus, pre-processing is start-ed after data collection, and takes several days due to the amount of supervision re-quired. Pre-processing the data in parallel to acquisition with more robust algorithms would save time and allow to discover bad samples and microscope settings early on. Warp is a new software for cryo-EM data pre-processing. It implements new algorithms for motion correction, CTF estimation, tomogram reconstruction, as well as deep learn-ing-based approaches to particle picking and image denoising. The algorithms are more accurate and robust, enabling unsupervised operation. Warp integrates all pre-processing steps into a pipeline that is executed on-the-fly during data collection. Inte-grated with SPA tools, the pipeline can produce 2D and 3D classes less than an hour into data collection for favorable samples. Here I describe the implementation of the new algorithms, and evaluate them on various movie and tilt series data sets. I show that un-supervised pre-processing of a tilted influenza hemagglutinin trimer sample with Warp and refinement in cryoSPARC can improve previously published resolution from 3.9 Å to 3.2 Å. Warp’s algorithms operate in a reference-free manner to improve the image resolution at the pre-processing stage when no high-resolution maps are available for the particles yet. Once 3D maps have been refined, they can be used to go back to the raw data and perform reference-based refinement of sample motion and CTF in movies and tilt series. M is a new tool I developed to solve this task in a multi-particle framework. Instead of following the SPA assumption that every particle is single and independent, M models all particles in a field of view as parts of a large, physically connected multi-particle system. This allows M to optimize hyper-parameters of the system, such as sample motion and deformation, or higher-order aberrations in the CTF. Because M models these effects accurately and optimizes all hyper-parameters simultaneously with particle alignments, it can surpass previous reference-based frame and tilt series alignment tools. Here I de-scribe the implementation of M, evaluate it on several data sets, and demonstrate that the new algorithms achieve equally high resolution with movie and tilt series data of the same sample. Most strikingly, the combination of Warp, RELION and M can resolve 70S ribosomes bound to an antibiotic at 3.5 Å inside vitrified Mycoplasma pneumoniae cells, marking a major advance in resolution for in situ imaging
    corecore