11,226 research outputs found

    3D Model Based Pose Invariant Face Recognition from a Single Frontal View

    Get PDF
    This paper proposes a 3D model based pose invariant face recognition method that can recognize a face of a large rotation angle from its single nearly frontal view. The proposed method achieves the goal by using an analytic-to-holistic approach and a novel algorithm for estimation of ear points. Firstly, the proposed method achieves facial feature detection, in which an edge map based algorithm is developed to detect the ear points. Based on the detected facial feature points 3D face models are computed and used to achieve pose estimation. Then we reconstruct the facial feature points' locations and synthesize facial feature templates in frontal view using computed face models and estimated poses. Finally, the proposed method achieves face recognition by corresponding template matching and corresponding geometric feature matching. Experimental results show that the proposed face recognition method is robust for pose variations including both seesaw rotations and sidespin rotations

    Efficient Human Facial Pose Estimation

    Get PDF
    Pose estimation has become an increasingly important area in computer vision and more specifically in human facial recognition and activity recognition for surveillance applications. Pose estimation is a process by which the rotation, pitch, or yaw of a human head is determined. Numerous methods already exist which can determine the angular change of a face, however, these methods vary in accuracy and their computational requirements tend to be too high for real-time applications. The objective of this thesis is to develop a method for pose estimation, which is computationally efficient, while still maintaining a reasonable degree of accuracy. In this thesis, a feature-based method is presented to determine the yaw angle of a human facial pose using a combination of artificial neural networks and template matching. The artificial neural networks are used for the feature detection portion of the algorithm along with skin detection and other image enhancement algorithms. The first head model, referred to as the Frontal Position Model, determines the pose of the face using two eyes and the mouth. The second model, referred to as the Side Position Model, is used when only one eye can be viewed and determines pose based on a single eye, the nose tip, and the mouth. The two models are presented to demonstrate the position change of facial features due to pose and to provide the means to determine the pose as these features change from the frontal position. The effectiveness of this pose estimation method is examined by looking at both the manual and automatic feature detection methods. Analysis is further performed on how errors in feature detection affect the resulting pose determination. The method resulted in the detection of facial pose from 30 to -30 degrees with an average error of 4.28 degrees for the Frontal Position Model and 5.79 degrees for the Side Position Model with correct feature detection. The Intel(R) Streaming SIMD Extensions (SSE) technology was employed to enhance the performance of floating point operations. The neural networks used in the feature detection process require a large amount of floating point calculations, due to the computation of the image data with weights and biases. With SSE optimization the algorithm becomes suitable for processing images in a real-time environment. The method is capable of determining features and estimating the pose at a rate of seven frames per second on a 1.8 GHz Pentium 4 computer

    On using gait to enhance frontal face extraction

    No full text
    Visual surveillance finds increasing deployment formonitoring urban environments. Operators need to be able to determine identity from surveillance images and often use face recognition for this purpose. In surveillance environments, it is necessary to handle pose variation of the human head, low frame rate, and low resolution input images. We describe the first use of gait to enable face acquisition and recognition, by analysis of 3-D head motion and gait trajectory, with super-resolution analysis. We use region- and distance-based refinement of head pose estimation. We develop a direct mapping to relate the 2-D image with a 3-D model. In gait trajectory analysis, we model the looming effect so as to obtain the correct face region. Based on head position and the gait trajectory, we can reconstruct high-quality frontal face images which are demonstrated to be suitable for face recognition. The contributions of this research include the construction of a 3-D model for pose estimation from planar imagery and the first use of gait information to enhance the face extraction process allowing for deployment in surveillance scenario

    Simultaneous Facial Landmark Detection, Pose and Deformation Estimation under Facial Occlusion

    Full text link
    Facial landmark detection, head pose estimation, and facial deformation analysis are typical facial behavior analysis tasks in computer vision. The existing methods usually perform each task independently and sequentially, ignoring their interactions. To tackle this problem, we propose a unified framework for simultaneous facial landmark detection, head pose estimation, and facial deformation analysis, and the proposed model is robust to facial occlusion. Following a cascade procedure augmented with model-based head pose estimation, we iteratively update the facial landmark locations, facial occlusion, head pose and facial de- formation until convergence. The experimental results on benchmark databases demonstrate the effectiveness of the proposed method for simultaneous facial landmark detection, head pose and facial deformation estimation, even if the images are under facial occlusion.Comment: International Conference on Computer Vision and Pattern Recognition, 201

    Unobtrusive and pervasive video-based eye-gaze tracking

    Get PDF
    Eye-gaze tracking has long been considered a desktop technology that finds its use inside the traditional office setting, where the operating conditions may be controlled. Nonetheless, recent advancements in mobile technology and a growing interest in capturing natural human behaviour have motivated an emerging interest in tracking eye movements within unconstrained real-life conditions, referred to as pervasive eye-gaze tracking. This critical review focuses on emerging passive and unobtrusive video-based eye-gaze tracking methods in recent literature, with the aim to identify different research avenues that are being followed in response to the challenges of pervasive eye-gaze tracking. Different eye-gaze tracking approaches are discussed in order to bring out their strengths and weaknesses, and to identify any limitations, within the context of pervasive eye-gaze tracking, that have yet to be considered by the computer vision community.peer-reviewe

    Pose-Invariant 3D Face Alignment

    Full text link
    Face alignment aims to estimate the locations of a set of landmarks for a given image. This problem has received much attention as evidenced by the recent advancement in both the methodology and performance. However, most of the existing works neither explicitly handle face images with arbitrary poses, nor perform large-scale experiments on non-frontal and profile face images. In order to address these limitations, this paper proposes a novel face alignment algorithm that estimates both 2D and 3D landmarks and their 2D visibilities for a face image with an arbitrary pose. By integrating a 3D deformable model, a cascaded coupled-regressor approach is designed to estimate both the camera projection matrix and the 3D landmarks. Furthermore, the 3D model also allows us to automatically estimate the 2D landmark visibilities via surface normals. We gather a substantially larger collection of all-pose face images to evaluate our algorithm and demonstrate superior performances than the state-of-the-art methods
    corecore