7 research outputs found

    On the use of smartphones as novel photogrammetric water gauging instruments: Developing tools for crowdsourcing water levels

    Get PDF
    The term global climate change is omnipresent since the beginning of the last decade. Changes in the global climate are associated with an increase in heavy rainfalls that can cause nearly unpredictable flash floods. Consequently, spatio-temporally high-resolution monitoring of rivers becomes increasingly important. Water gauging stations continuously and precisely measure water levels. However, they are rather expensive in purchase and maintenance and are preferably installed at water bodies relevant for water management. Small-scale catchments remain often ungauged. In order to increase the data density of hydrometric monitoring networks and thus to improve the prediction quality of flood events, new, flexible and cost-effective water level measurement technologies are required. They should be oriented towards the accuracy requirements of conventional measurement systems and facilitate the observation of water levels at virtually any time, even at the smallest rivers. A possible solution is the development of a photogrammetric smartphone application (app) for crowdsourcing water levels, which merely requires voluntary users to take pictures of a river section to determine the water level. Today’s smartphones integrate high-resolution cameras, a variety of sensors, powerful processors, and mass storage. However, they are designed for the mass market and use low-cost hardware that cannot comply with the quality of geodetic measurement technology. In order to investigate the potential for mobile measurement applications, research was conducted on the smartphone as a photogrammetric measurement instrument as part of the doctoral project. The studies deal with the geometric stability of smartphone cameras regarding device-internal temperature changes and with the accuracy potential of rotation parameters measured with smartphone sensors. The results show a high, temperature-related variability of the interior orientation parameters, which is why the calibration of the camera should be carried out during the immediate measurement. The results of the sensor investigations show considerable inaccuracies when measuring rotation parameters, especially the compass angle (errors up to 90° were observed). The same applies to position parameters measured by global navigation satellite system (GNSS) receivers built into smartphones. According to the literature, positional accuracies of about 5 m are possible in best conditions. Otherwise, errors of several 10 m are to be expected. As a result, direct georeferencing of image measurements using current smartphone technology should be discouraged. In consideration of the results, the water gauging app Open Water Levels (OWL) was developed, whose methodological development and implementation constituted the core of the thesis project. OWL enables the flexible measurement of water levels via crowdsourcing without requiring additional equipment or being limited to specific river sections. Data acquisition and processing take place directly in the field, so that the water level information is immediately available. In practice, the user captures a short time-lapse sequence of a river bank with OWL, which is used to calculate a spatio-temporal texture that enables the detection of the water line. In order to translate the image measurement into 3D object space, a synthetic, photo-realistic image of the situation is created from existing 3D data of the river section to be investigated. Necessary approximations of the image orientation parameters are measured by smartphone sensors and GNSS. The assignment of camera image and synthetic image allows for the determination of the interior and exterior orientation parameters by means of space resection and finally the transfer of the image-measured 2D water line into the 3D object space to derive the prevalent water level in the reference system of the 3D data. In comparison with conventionally measured water levels, OWL reveals an accuracy potential of 2 cm on average, provided that synthetic image and camera image exhibit consistent image contents and that the water line can be reliably detected. In the present dissertation, related geometric and radiometric problems are comprehensively discussed. Furthermore, possible solutions, based on advancing developments in smartphone technology and image processing as well as the increasing availability of 3D reference data, are presented in the synthesis of the work. The app Open Water Levels, which is currently available as a beta version and has been tested on selected devices, provides a basis, which, with continuous further development, aims to achieve a final release for crowdsourcing water levels towards the establishment of new and the expansion of existing monitoring networks.Der Begriff des globalen Klimawandels ist seit Beginn des letzten Jahrzehnts allgegenwĂ€rtig. Die VerĂ€nderung des Weltklimas ist mit einer Zunahme von Starkregenereignissen verbunden, die nahezu unvorhersehbare Sturzfluten verursachen können. Folglich gewinnt die raumzeitlich hochaufgelöste Überwachung von FließgewĂ€ssern zunehmend an Bedeutung. Pegelmessstationen erfassen kontinuierlich und prĂ€zise WasserstĂ€nde, sind jedoch in Anschaffung und Wartung sehr teuer und werden vorzugsweise an wasserwirtschaftlich-relevanten GewĂ€ssern installiert. Kleinere GewĂ€sser bleiben hĂ€ufig unbeobachtet. Um die Datendichte hydrometrischer Messnetze zu erhöhen und somit die VorhersagequalitĂ€t von Hochwasserereignissen zu verbessern, sind neue, kostengĂŒnstige und flexibel einsetzbare Wasserstandsmesstechnologien erforderlich. Diese sollten sich an den Genauigkeitsanforderungen konventioneller Messsysteme orientieren und die Beobachtung von WasserstĂ€nden zu praktisch jedem Zeitpunkt, selbst an den kleinsten FlĂŒssen, ermöglichen. Ein Lösungsvorschlag ist die Entwicklung einer photogrammetrischen Smartphone-Anwendung (App) zum Crowdsourcing von WasserstĂ€nden mit welcher freiwillige Nutzer lediglich Bilder eines Flussabschnitts aufnehmen mĂŒssen, um daraus den Wasserstand zu bestimmen. Heutige Smartphones integrieren hochauflösende Kameras, eine Vielzahl von Sensoren, leistungsfĂ€hige Prozessoren und Massenspeicher. Sie sind jedoch fĂŒr den Massenmarkt konzipiert und verwenden kostengĂŒnstige Hardware, die nicht der QualitĂ€t geodĂ€tischer Messtechnik entsprechen kann. Um das Einsatzpotential in mobilen Messanwendungen zu eruieren, sind Untersuchungen zum Smartphone als photogrammetrisches Messinstrument im Rahmen des Promotionsprojekts durchgefĂŒhrt worden. Die Studien befassen sich mit der geometrischen StabilitĂ€t von Smartphone-Kameras bezĂŒglich gerĂ€teinterner TemperaturĂ€nderungen und mit dem Genauigkeitspotential von mit Smartphone-Sensoren gemessenen Rotationsparametern. Die Ergebnisse zeigen eine starke, temperaturbedingte VariabilitĂ€t der inneren Orientierungsparameter, weshalb die Kalibrierung der Kamera zum unmittelbaren Messzeitpunkt erfolgen sollte. Die Ergebnisse der Sensoruntersuchungen zeigen große Ungenauigkeiten bei der Messung der Rotationsparameter, insbesondere des Kompasswinkels (Fehler von bis zu 90° festgestellt). Selbiges gilt auch fĂŒr Positionsparameter, gemessen durch in Smartphones eingebaute EmpfĂ€nger fĂŒr Signale globaler Navigationssatellitensysteme (GNSS). Wie aus der Literatur zu entnehmen ist, lassen sich unter besten Bedingungen Lagegenauigkeiten von etwa 5 m erreichen. Abseits davon sind Fehler von mehreren 10 m zu erwarten. Infolgedessen ist von einer direkten Georeferenzierung von Bildmessungen mittels aktueller Smartphone-Technologie abzusehen. Unter BerĂŒcksichtigung der gewonnenen Erkenntnisse wurde die Pegel-App Open Water Levels (OWL) entwickelt, deren methodische Entwicklung und Implementierung den Kern der Arbeit bildete. OWL ermöglicht die flexible Messung von WasserstĂ€nden via Crowdsourcing, ohne dabei zusĂ€tzliche AusrĂŒstung zu verlangen oder auf spezifische Flussabschnitte beschrĂ€nkt zu sein. Datenaufnahme und Verarbeitung erfolgen direkt im Feld, so dass die Pegelinformationen sofort verfĂŒgbar sind. Praktisch nimmt der Anwender mit OWL eine kurze Zeitraffersequenz eines Flussufers auf, die zur Berechnung einer Raum-Zeit-Textur dient und die Erkennung der Wasserlinie ermöglicht. Zur Übersetzung der Bildmessung in den 3D-Objektraum wird aus vorhandenen 3D-Daten des zu untersuchenden Flussabschnittes ein synthetisches, photorealistisches Abbild der Aufnahmesituation erstellt. Erforderliche NĂ€herungen der Bildorientierungsparameter werden von Smartphone-Sensoren und GNSS gemessen. Die Zuordnung von Kamerabild und synthetischem Bild erlaubt die Bestimmung der inneren und Ă€ußeren Orientierungsparameter mittels rĂ€umlichen RĂŒckwĂ€rtsschnitt. Nach Rekonstruktion der Aufnahmesituation lĂ€sst sich die im Bild gemessene 2D-Wasserlinie in den 3D-Objektraum projizieren und der vorherrschende Wasserstand im Referenzsystem der 3D-Daten ableiten. Im Soll-Ist-Vergleich mit konventionell gemessenen Pegeldaten zeigt OWL ein erreichbares Genauigkeitspotential von durchschnittlich 2 cm, insofern synthetisches und reales Kamerabild einen möglichst konsistenten Bildinhalt aufweisen und die Wasserlinie zuverlĂ€ssig detektiert werden kann. In der vorliegenden Dissertation werden damit verbundene geometrische und radiometrische Probleme ausfĂŒhrlich diskutiert sowie LösungsansĂ€tze, auf der Basis fortschreitender Entwicklungen von Smartphone-Technologie und Bildverarbeitung sowie der zunehmenden VerfĂŒgbarkeit von 3D-Referenzdaten, in der Synthese der Arbeit vorgestellt. Mit der gegenwĂ€rtig als Betaversion vorliegenden und auf ausgewĂ€hlten GerĂ€ten getesteten App Open Water Levels wurde eine Basis geschaffen, die mit kontinuierlicher Weiterentwicklung eine finale Freigabe fĂŒr das Crowdsourcing von WasserstĂ€nden und damit den Aufbau neuer und die Erweiterung bestehender Monitoring-Netzwerke anstrebt

    Learning Pose Invariant and Covariant Classifiers from Image Sequences

    Get PDF
    Object tracking and detection over a wide range of viewpoints is a long-standing problem in Computer Vision. Despite significant advance in wide-baseline sparse interest point matching and development of robust dense feature models, it remains a largely open problem. Moreover, abundance of low cost mobile platforms and novel application areas, such as real-time Augmented Reality, constantly push the performance limits of existing methods. There is a need to modify and adapt these to meet more stringent speed and capacity requirements. In this thesis, we aim to overcome the difficulties due to the multi-view nature of the object detection task. We significantly improve upon existing statistical keypoint matching algorithms to perform fast and robust recognition of image patches independently of object pose. We demonstrate this on various 2D and 3D datasets. The statistical keypoint matching approaches require massive amounts of training data covering a wide range of viewpoints. We have developed a weakly supervised algorithm to greatly simplify their training for 3D objects. We also integrate this algorithm in a 3D tracking-by-detection system to perform real-time Augmented Reality. Finally, we extend the use of a large training set with smooth viewpoint variation to category-level object detection. We introduce a new dataset with continuous pose annotations which we use to train pose estimators for objects of a single category. By using these estimators' output to select pose specific classifiers, our framework can simultaneously localize objects in an image and recover their pose. These decoupled pose estimation and classification steps yield improved detection rates. Overall, we rely on image and video sequences to train classifiers that can either operate independently of the object pose or recover the pose parameters explicitly. We show that in both cases our approaches mitigate the effects of viewpoint changes and improve the recognition performance
    corecore