1,053 research outputs found

    On the Scalability of Data Reduction Techniques in Current and Upcoming HPC Systems from an Application Perspective

    Full text link
    We implement and benchmark parallel I/O methods for the fully-manycore driven particle-in-cell code PIConGPU. Identifying throughput and overall I/O size as a major challenge for applications on today's and future HPC systems, we present a scaling law characterizing performance bottlenecks in state-of-the-art approaches for data reduction. Consequently, we propose, implement and verify multi-threaded data-transformations for the I/O library ADIOS as a feasible way to trade underutilized host-side compute potential on heterogeneous systems for reduced I/O latency.Comment: 15 pages, 5 figures, accepted for DRBSD-1 in conjunction with ISC'1

    Hardware acceleration of reaction-diffusion systems:a guide to optimisation of pattern formation algorithms using OpenACC

    Get PDF
    Reaction Diffusion Systems (RDS) have widespread applications in computational ecology, biology, computer graphics and the visual arts. For the former applications a major barrier to the development of effective simulation models is their computational complexity - it takes a great deal of processing power to simulate enough replicates such that reliable conclusions can be drawn. Optimizing the computation is thus highly desirable in order to obtain more results with less resources. Existing optimizations of RDS tend to be low-level and GPGPU based. Here we apply the higher-level OpenACC framework to two case studies: a simple RDS to learn the ‘workings’ of OpenACC and a more realistic and complex example. Our results show that simple parallelization directives and minimal data transfer can produce a useful performance improvement. The relative simplicity of porting OpenACC code between heterogeneous hardware is a key benefit to the scientific computing community in terms of speed-up and portability

    DD-α\alphaAMG on QPACE 3

    Full text link
    We describe our experience porting the Regensburg implementation of the DD-α\alphaAMG solver from QPACE 2 to QPACE 3. We first review how the code was ported from the first generation Intel Xeon Phi processor (Knights Corner) to its successor (Knights Landing). We then describe the modifications in the communication library necessitated by the switch from InfiniBand to Omni-Path. Finally, we present the performance of the code on a single processor as well as the scaling on many nodes, where in both cases the speedup factor is close to the theoretical expectations.Comment: 12 pages, 6 figures, Proceedings of Lattice 201

    Acceleration of a Full-scale Industrial CFD Application with OP2

    Get PDF

    nsroot: Minimalist Process Isolation Tool Implemented With Linux Namespaces

    Get PDF
    Data analyses in the life sciences are moving from tools run on a personal computer to services run on large computing platforms. This creates a need to package tools and dependencies for easy installation, configuration and deployment on distributed platforms. In addition, for secure execution there is a need for process isolation on a shared platform. Existing virtual machine and container technologies are often more complex than traditional Unix utilities, like chroot, and often require root privileges in order to set up or use. This is especially challenging on HPC systems where users typically do not have root access. We therefore present nsroot, a lightweight Linux namespaces based process isolation tool. It allows restricting the runtime environment of data analysis tools that may not have been designed with security as a top priority, in order to reduce the risk and consequences of security breaches, without requiring any special privileges. The codebase of nsroot is small, and it provides a command line interface similar to chroot. It can be used on all Linux kernels that implement user namespaces. In addition, we propose combining nsroot with the AppImage format for secure execution of packaged applications. nsroot is open sourced and available at: https://github.com/uit-no/nsroo
    • …
    corecore