17 research outputs found

    Kilometer-scale climate models: Prospects and challenges

    Get PDF
    Currently major efforts are underway toward refining the horizontal resolution (or grid spacing) of climate models to about 1 km, using both global and regional climate models (GCMs and RCMs). Several groups have succeeded in conducting kilometer-scale multiweek GCM simulations and decadelong continental-scale RCM simulations. There is the well-founded hope that this increase in resolution represents a quantum jump in climate modeling, as it enables replacing the parameterization of moist convection by an explicit treatment. It is expected that this will improve the simulation of the water cycle and extreme events and reduce uncertainties in climate change projections. While kilometer-scale resolution is commonly employed in limited-area numerical weather prediction, enabling it on global scales for extended climate simulations requires a concerted effort. In this paper, we exploit an RCM that runs entirely on graphics processing units (GPUs) and show examples that highlight the prospects of this approach. A particular challenge addressed in this paper relates to the growth in output volumes. It is argued that the data avalanche of high-resolution simulations will make it impractical or impossible to store the data. Rather, repeating the simulation and conducting online analysis will become more efficient. A prototype of this methodology is presented. It makes use of a bit-reproducible model version that ensures reproducible simulations across hardware architectures, in conjunction with a data virtualization layer as a common interface for output analyses. An assessment of the potential of these novel approaches will be provided

    LFRic: meeting the challenges of scalability and performance portability in weather and climate models

    Get PDF
    This paper describes LFRic: the new weather and climate modelling system being developed by the UK Met Office to replace the existing Unified Model in preparation for exascale computing in the 2020s. LFRic uses the GungHo dynamical core and runs on a semi-structured cubed-sphere mesh. The design of the supporting infrastructure follows object-oriented principles to facilitate modularity and the use of external libraries where possible. In particular, a `separation of concerns' between the science code and parallel code is imposed to promote performance portability. An application called PSyclone, developed at the STFC Hartree centre, can generate the parallel code enabling deployment of a single source science code onto different machine architectures. This paper provides an overview of the scientific requirement, the design of the software infrastructure, and examples of PSyclone usage. Preliminary performance results show strong scaling and an indication that hybrid MPI/OpenMP performs better than pure MPI

    AIMES: advanced computation and I/O methods for earth-system simulations

    Get PDF
    Dealing with extreme scale Earth-system models is challenging from the computer science perspective, as the required computing power and storage capacity are steadily increasing. Scientists perform runs with growing resolution or aggregate results from many similar smaller-scale runs with slightly different initial conditions (the so-called ensemble runs). In the fifth Coupled Model Intercomparison Project (CMIP5), the produced datasets require more than three Petabytes of storage and the compute and storage requirements are increasing significantly for CMIP6. Climate scientists across the globe are developing next-generation models based on improved numerical formulation leading to grids that are discretized in alternative forms such as an icosahedral (geodesic) grid. The developers of these models face similar problems in scaling, maintaining and optimizing code. Performance portability and the maintainability of code are key concerns of scientists as, compared to industry projects, model code is continuously revised and extended to incorporate further levels of detail. This leads to a rapidly growing code base that is rarely refactored. However, code modernization is important to maintain productivity of the scientist working with the code and for utilizing performance provided by modern and future architectures. The need for performance optimization is motivated by the evolution of the parallel architecture landscape from homogeneous flat machines to heterogeneous combinations of processors with deep memory hierarchy. Notably, the rise of many-core, throughput-oriented accelerators, such as GPUs, requires non-trivial code changes at minimum and, even worse, may necessitate a substantial rewrite of the existing codebase. At the same time, the code complexity increases the difficulty for computer scientists and vendors to understand and optimize the code for a given system. Storing the products of climate predictions requires a large storage and archival system which is expensive. Often, scientists restrict the number of scientific variables and write interval to keep the costs balanced. Compression algorithms can reduce the costs significantly but can also increase the scientific yield of simulation runs. In the AIMES project, we addressed the key issues of programmability, computational efficiency and I/O limitations that are common in next-generation icosahedral earth-system models. The project focused on the separation of concerns between domain scientist, computational scientists, and computer scientists

    The ICON-A model for direct QBO simulations on GPUs (version icon-cscs:baf28a514)

    Get PDF
    Classical numerical models for the global atmosphere, as used for numerical weather forecasting or climate research, have been developed for conventional central processing unit (CPU) architectures. This hinders the employment of such models on current top-performing supercomputers, which achieve their computing power with hybrid architectures, mostly using graphics processing units (GPUs). Thus also scientific applications of such models are restricted to the lesser computer power of CPUs. Here we present the development of a GPU-enabled version of the ICON atmosphere model (ICON-A), motivated by a research project on the quasi-biennial oscillation (QBO), a global-scale wind oscillation in the equatorial stratosphere that depends on a broad spectrum of atmospheric waves, which originates from tropical deep convection. Resolving the relevant scales, from a few kilometers to the size of the globe, is a formidable computational problem, which can only be realized now on top-performing supercomputers. This motivated porting ICON-A, in the specific configuration needed for the research project, in a first step to the GPU architecture of the Piz Daint computer at the Swiss National Supercomputing Centre and in a second step to the JUWELS Booster computer at the Forschungszentrum Jülich. On Piz Daint, the ported code achieves a single-node GPU vs. CPU speedup factor of 6.4 and allows for global experiments at a horizontal resolution of 5 km on 1024 computing nodes with 1 GPU per node with a turnover of 48 simulated days per day. On JUWELS Booster, the more modern hardware in combination with an upgraded code base allows for simulations at the same resolution on 128 computing nodes with 4 GPUs per node and a turnover of 133 simulated days per day. Additionally, the code still remains functional on CPUs, as is demonstrated by additional experiments on the Levante compute system at the German Climate Computing Center. While the application shows good weak scaling over the tested 16-fold increase in grid size and node count, making also higher resolved global simulations possible, the strong scaling on GPUs is relatively poor, which limits the options to increase turnover with more nodes. Initial experiments demonstrate that the ICON-A model can simulate downward-propagating QBO jets, which are driven by wave–mean flow interaction

    Programming Abstractions for Data Locality

    Get PDF
    The goal of the workshop and this report is to identify common themes and standardize concepts for locality-preserving abstractions for exascale programming models. Current software tools are built on the premise that computing is the most expensive component, we are rapidly moving to an era that computing is cheap and massively parallel while data movement dominates energy and performance costs. In order to respond to exascale systems (the next generation of high performance computing systems), the scientific computing community needs to refactor their applications to align with the emerging data-centric paradigm. Our applications must be evolved to express information about data locality. Unfortunately current programming environments offer few ways to do so. They ignore the incurred cost of communication and simply rely on the hardware cache coherency to virtualize data movement. With the increasing importance of task-level parallelism on future systems, task models have to support constructs that express data locality and affinity. At the system level, communication libraries implicitly assume all the processing elements are equidistant to each other. In order to take advantage of emerging technologies, application developers need a set of programming abstractions to describe data locality for the new computing ecosystem. The new programming paradigm should be more data centric and allow to describe how to decompose and how to layout data in the memory.Fortunately, there are many emerging concepts such as constructs for tiling, data layout, array views, task and thread affinity, and topology aware communication libraries for managing data locality. There is an opportunity to identify commonalities in strategy to enable us to combine the best of these concepts to develop a comprehensive approach to expressing and managing data locality on exascale programming systems. These programming model abstractions can expose crucial information about data locality to the compiler and runtime system to enable performance-portable code. The research question is to identify the right level of abstraction, which includes techniques that range from template libraries all the way to completely new languages to achieve this goal

    Software for Exascale Computing - SPPEXA 2016-2019

    Get PDF
    This open access book summarizes the research done and results obtained in the second funding phase of the Priority Program 1648 "Software for Exascale Computing" (SPPEXA) of the German Research Foundation (DFG) presented at the SPPEXA Symposium in Dresden during October 21-23, 2019. In that respect, it both represents a continuation of Vol. 113 in Springer’s series Lecture Notes in Computational Science and Engineering, the corresponding report of SPPEXA’s first funding phase, and provides an overview of SPPEXA’s contributions towards exascale computing in today's sumpercomputer technology. The individual chapters address one or more of the research directions (1) computational algorithms, (2) system software, (3) application software, (4) data management and exploration, (5) programming, and (6) software tools. The book has an interdisciplinary appeal: scholars from computational sub-fields in computer science, mathematics, physics, or engineering will find it of particular interest

    Automated cache optimisations of stencil computations for partial differential equations

    Get PDF
    This thesis focuses on numerical methods that solve partial differential equations. Our focal point is the finite difference method, which solves partial differential equations by approximating derivatives with explicit finite differences. These partial differential equation solvers consist of stencil computations on structured grids. Stencils for computing real-world practical applications are patterns often characterised by many memory accesses and non-trivial arithmetic expressions that lead to high computational costs compared to simple stencils used in much prior proof-of-concept work. In addition, the loop nests to express stencils on structured grids may often be complicated. This work is highly motivated by a specific domain of stencil computations where one of the challenges is non-aligned to the structured grid ("off-the-grid") operations. These operations update neighbouring grid points through scatter and gather operations via non-affine memory accesses, such as {A[B[i]]}. In addition to this challenge, these practical stencils often include many computation fields (need to store multiple grid copies), complex data dependencies and imperfect loop nests. In this work, we aim to increase the performance of stencil kernel execution. We study automated cache-memory-dependent optimisations for stencil computations. This work consists of two core parts with their respective contributions.The first part of our work tries to reduce the data movement in stencil computations of practical interest. Data movement is a dominant factor affecting the performance of high-performance computing applications. It has long been a target of optimisations due to its impact on execution time and energy consumption. This thesis tries to relieve this cost by applying temporal blocking optimisations, also known as time-tiling, to stencil computations. Temporal blocking is a well-known technique to enhance data reuse in stencil computations. However, it is rarely used in practical applications but rather in theoretical examples to prove its efficacy. Applying temporal blocking to scientific simulations is more complex. More specifically, in this work, we focus on the application context of seismic and medical imaging. In this area, we often encounter scatter and gather operations due to signal sources and receivers at arbitrary locations in the computational domain. These operations make the application of temporal blocking challenging. We present an approach to overcome this challenge and successfully apply temporal blocking.In the second part of our work, we extend the first part as an automated approach targeting a wide range of simulations modelled with partial differential equations. Since temporal blocking is error-prone, tedious to apply by hand and highly complex to assimilate theoretically and practically, we are motivated to automate its application and automatically generate code that benefits from it. We discuss algorithmic approaches and present a generalised compiler pipeline to automate the application of temporal blocking. These passes are written in the Devito compiler. They are used to accelerate the computation of stencil kernels in areas such as seismic and medical imaging, computational fluid dynamics and machine learning. \href{www.devitoproject.org}{Devito} is a Python package to implement optimised stencil computation (e.g., finite differences, image processing, machine learning) from high-level symbolic problem definitions. Devito builds on \href{www.sympy.org}{SymPy} and employs automated code generation and just-in-time compilation to execute optimised computational kernels on several computer platforms, including CPUs, GPUs, and clusters thereof. We show how we automate temporal blocking code generation without user intervention and often achieve better time-to-solution. We enable domain-specific optimisation through compiler passes and offer temporal blocking gains from a high-level symbolic abstraction. These automated optimisations benefit various computational kernels for solving real-world application problems.Open Acces

    Fuelling the zero-emissions road freight of the future: routing of mobile fuellers

    Get PDF
    The future of zero-emissions road freight is closely tied to the sufficient availability of new and clean fuel options such as electricity and Hydrogen. In goods distribution using Electric Commercial Vehicles (ECVs) and Hydrogen Fuel Cell Vehicles (HFCVs) a major challenge in the transition period would pertain to their limited autonomy and scarce and unevenly distributed refuelling stations. One viable solution to facilitate and speed up the adoption of ECVs/HFCVs by logistics, however, is to get the fuel to the point where it is needed (instead of diverting the route of delivery vehicles to refuelling stations) using "Mobile Fuellers (MFs)". These are mobile battery swapping/recharging vans or mobile Hydrogen fuellers that can travel to a running ECV/HFCV to provide the fuel they require to complete their delivery routes at a rendezvous time and space. In this presentation, new vehicle routing models will be presented for a third party company that provides MF services. In the proposed problem variant, the MF provider company receives routing plans of multiple customer companies and has to design routes for a fleet of capacitated MFs that have to synchronise their routes with the running vehicles to deliver the required amount of fuel on-the-fly. This presentation will discuss and compare several mathematical models based on different business models and collaborative logistics scenarios

    Tools and Algorithms for the Construction and Analysis of Systems

    Get PDF
    This open access two-volume set constitutes the proceedings of the 26th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2020, which took place in Dublin, Ireland, in April 2020, and was held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2020. The total of 60 regular papers presented in these volumes was carefully reviewed and selected from 155 submissions. The papers are organized in topical sections as follows: Part I: Program verification; SAT and SMT; Timed and Dynamical Systems; Verifying Concurrent Systems; Probabilistic Systems; Model Checking and Reachability; and Timed and Probabilistic Systems. Part II: Bisimulation; Verification and Efficiency; Logic and Proof; Tools and Case Studies; Games and Automata; and SV-COMP 2020

    Climate change 2013: the physical science basis

    Get PDF
    This report argues that it is extremely likely that human influence has been the dominant cause of the observed warming since the mid-20th century. This is an an unedited version of the Intergovernmental Panel on Climate Change\u27s Working Group I contribution to the Fifth Assessment Report following the release of its Summary for Policymakers on 27 September 2013.  The full Report is posted in the version distributed to governments on 7 June 2013 and accepted by Working Group I and the Panel on 27 September 2013. It includes the Technical Summary, 14 chapters and an Atlas of Global and Regional Climate Projections. Following copy-editing, layout, final checks for errors and adjustments for changes in the Summary for Policymakers, the full Report will be published online in January 2014 and in book form by Cambridge University Press a few months later
    corecore