712 research outputs found

    Scenario selection optimization in system engineering projects under uncertainty: a multi-objective ant colony method based on a learning mechanism

    Get PDF
    This paper presents a multi-objective Ant Colony Optimization (MOACO) algorithm based on a learning mechanism (named MOACO-L) for the optimization of project scenario selection under uncertainty in a system engineering (SE) process. The objectives to minimize are the total cost of the project, its total duration and the global risk. Risk is considered as an uncertainty about task costs and task durations in the project graph. The learning mechanism aims to improve the MOACO algorithm for the selection of optimal project scenarios in aSE project by considering the uncertainties on the project objectives. The MOACO-L algorithm is then developed by taking into account ants’ past experiences. The learning mechanism allows a better exploration of the search space and an improvement of the MOACO algorithm performance. To validate our approach, some experimental results are presented

    Methods to Support the Project Selection Problem With Non-Linear Portfolio Objectives, Time Sensitive Objectives, Time Sensitive Resource Constraints, and Modeling Inadequacies

    Get PDF
    The United States Air Force relies upon information production activities to gain insight regarding uncertainties affecting important system configuration and in-mission task execution decisions. Constrained resources that prevent the fulfillment of every information production request, multiple information requestors holding different temporal-sensitive objectives, non-constant marginal value preferences, and information-product aging factors that affect the value-of-information complicate the management of these activities. This dissertation reviews project selection research related to these issues and presents novel methods to address these complications. Quantitative experimentation results demonstrate these methods’ significance

    Population-based algorithms for improved history matching and uncertainty quantification of Petroleum reservoirs

    Get PDF
    In modern field management practices, there are two important steps that shed light on a multimillion dollar investment. The first step is history matching where the simulation model is calibrated to reproduce the historical observations from the field. In this inverse problem, different geological and petrophysical properties may provide equally good history matches. Such diverse models are likely to show different production behaviors in future. This ties the history matching with the second step, uncertainty quantification of predictions. Multiple history matched models are essential for a realistic uncertainty estimate of the future field behavior. These two steps facilitate decision making and have a direct impact on technical and financial performance of oil and gas companies. Population-based optimization algorithms have been recently enjoyed growing popularity for solving engineering problems. Population-based systems work with a group of individuals that cooperate and communicate to accomplish a task that is normally beyond the capabilities of each individual. These individuals are deployed with the aim to solve the problem with maximum efficiency. This thesis introduces the application of two novel population-based algorithms for history matching and uncertainty quantification of petroleum reservoir models. Ant colony optimization and differential evolution algorithms are used to search the space of parameters to find multiple history matched models and, using a Bayesian framework, the posterior probability of the models are evaluated for prediction of reservoir performance. It is demonstrated that by bringing latest developments in computer science such as ant colony, differential evolution and multiobjective optimization, we can improve the history matching and uncertainty quantification frameworks. This thesis provides insights into performance of these algorithms in history matching and prediction and develops an understanding of their tuning parameters. The research also brings a comparative study of these methods with a benchmark technique called Neighbourhood Algorithms. This comparison reveals the superiority of the proposed methodologies in various areas such as computational efficiency and match quality

    Numerical and Evolutionary Optimization 2020

    Get PDF
    This book was established after the 8th International Workshop on Numerical and Evolutionary Optimization (NEO), representing a collection of papers on the intersection of the two research areas covered at this workshop: numerical optimization and evolutionary search techniques. While focusing on the design of fast and reliable methods lying across these two paradigms, the resulting techniques are strongly applicable to a broad class of real-world problems, such as pattern recognition, routing, energy, lines of production, prediction, and modeling, among others. This volume is intended to serve as a useful reference for mathematicians, engineers, and computer scientists to explore current issues and solutions emerging from these mathematical and computational methods and their applications

    A general space-time model for combinatorial optimization problems (and not only)

    Get PDF
    We consider the problem of defining a strategy consisting of a set of facilities taking into account also the location where they have to be assigned and the time in which they have to be activated. The facilities are evaluated with respect to a set of criteria. The plan has to be devised respecting some constraints related to different aspects of the problem such as precedence restrictions due to the nature of the facilities. Among the constraints, there are some related to the available budget. We consider also the uncertainty related to the performances of the facilities with respect to considered criteria and plurality of stakeholders participating to the decision. The considered problem can be seen as the combination of some prototypical operations research problems: knapsack problem, location problem and project scheduling. Indeed, the basic brick of our model is a variable xilt which takes value 1 if facility i is activated in location l at time t, and 0 otherwise. Due to the conjoint consideration of a location and a time in the decision variables, what we propose can be seen as a general space-time model for operations research problems. We discuss how such a model permits to handle complex problems using several methodologies including multiple attribute value theory and multiobjective optimization. With respect to the latter point, without any loss of the generality, we consider the compromise programming and an interactive methodology based on the Dominance-based Rough Set Approach. We illustrate the application of our model with a simple didactic example

    Multi-criteria decision-making in whole process design

    Get PDF
    PhD ThesisIn recent years, the chemical and pharmaceutical industries have faced increased development times and costs with fewer novel chemicals being discovered. This has resulted in many companies focusing on innovative research and development as they consider this key to business success. In particular, a number of leading industrial organisations have adopted the principles of Whole Process Design (WPD). WPD considers the optimisation of the entire product development process, from raw materials to end product, rather than focusing on each individual unit operation. The complexity involved in the implementation of WPD requires rationalised decision-making, often with limited or uncertain information. This thesis assesses the most widely applied methods in Multi-Criteria Decision Analysis (MCDA) in conjunction with the results of two interviews and two questionnaires that identified the industrial requirements for decision-making during WPD. From the findings of this work, a novel decision-making methodology was proposed, the outcome of which allows a decision-maker to visually interpret their decision results with associated levels of uncertainty. To validate the proposed methodology, a software framework was developed that incorporates two other decision-making approaches, the Analytical Hierarchy Process (AHP) and ELimination Et Choix Traduisant la REalité trois (ELECTRE III). The framework was then applied to a number of industrial case studies to validate the application of the proposed methodology.Engineering and Physical Sciences Research Council (EPSRC) and Chemistry Innovatio

    New Swarm-Based Metaheuristics for Resource Allocation and Schwduling Problems

    Full text link
    Tesis doctoral inédita leída en la Universidad Autónoma de Madrid, Escuela Politécnica Superior, Departamento de Ingeniería Informática. Fecha de lectura : 10-07-2017Esta tesis tiene embargado el acceso al texto completo hasta el 10-01-201

    Neuro-fuzzy resource forecast in site suitability assessment for wind and solar energy: a mini review

    Get PDF
    Abstract:Site suitability problems in renewable energy studies have taken a new turn since the advent of geographical information system (GIS). GIS has been used for site suitability analysis for renewable energy due to its prowess in processing and analyzing attributes with geospatial components. Multi-criteria decision making (MCDM) tools are further used for criteria ranking in the order of influence on the study. Upon location of most appropriate sites, the need for intelligent resource forecast to aid in strategic and operational planning becomes necessary if viability of the investment will be enhanced and resource variability will be better understood. One of such intelligent models is the adaptive neuro-fuzzy inference system (ANFIS) and its variants. This study presents a mini-review of GIS-based MCDM facility location problems in wind and solar resource site suitability analysis and resource forecast using ANFIS-based models. We further present a framework for the integration of the two concepts in wind and solar energy studies. Various MCDM techniques for decision making with their strengths and weaknesses were presented. Country specific studies which apply GIS-based method in site suitability were presented with criteria considered. Similarly, country-specific studies in ANFIS-based resource forecasts for wind and solar energy were also presented. From our findings, there has been no technically valid range of values for spatial criteria and the analytical hierarchical process (AHP) has been commonly used for criteria ranking leaving other techniques less explored. Also, hybrid ANFIS models are more effective compared to standalone ANFIS models in resource forecast, and ANFIS optimized with population-based models has been mostly used. Finally, we present a roadmap for integrating GIS-MCDM site suitability studies with ANFIS-based modeling for improved strategic and operational planning

    Inferring parameters of a relational system of preferences from assignment examples using an evolutionary algorithm

    Get PDF
    Most evolutionary multi-objective algorithms perform poorly in many objective problems. They normally do not make selective pressure towards the Region of Interest (RoI), the privileged zone in the Pareto frontier that contains solutions important to a DM.  Several works have proved that a priori incorporation of preferences improves convergence towards the RoI. The work of (E. Fernandez, E. Lopez, F. Lopez & C.A. Coello Coello, 2011) uses a binary fuzzy outranking relational system to map many-objective problems into a tri-objective optimization problem that searches the RoI; however, it requires the elicitation of many preference parameters, a very hard task. The use of an indirect elicitation approach overcomes such situation by allowing the parameter inference from a battery of examples.  Even though the relational system of Fernandez et al. (2011) is based on binary relations, it is more convenient to elicit its parameters from assignment examples. In this sense, this paper proposes an evolutionary-based indirect parameter elicitation method that uses preference information embedded in assignment examples, and it offers an analysis of their impact in a priori incorporation of DM’s preferences. Results show, through an extensive computer experiment over random test sets, that the method estimates properly the model parameter’s values. First published online 7 May 201
    • …
    corecore