261 research outputs found

    A scalable, portable, FPGA-based implementation of the Unscented Kalman Filter

    Get PDF
    Sustained technological progress has come to a point where robotic/autonomous systems may well soon become ubiquitous. In order for these systems to actually be useful, an increase in autonomous capability is necessary for aerospace, as well as other, applications. Greater aerospace autonomous capability means there is a need for high performance state estimation. However, the desire to reduce costs through simplified development processes and compact form factors can limit performance. A hardware-based approach, such as using a Field Programmable Gate Array (FPGA), is common when high performance is required, but hardware approaches tend to have a more complicated development process when compared to traditional software approaches; greater development complexity, in turn, results in higher costs. Leveraging the advantages of both hardware-based and software-based approaches, a hardware/software (HW/SW) codesign of the Unscented Kalman Filter (UKF), based on an FPGA, is presented. The UKF is split into an application-specific part, implemented in software to retain portability, and a non-application-specific part, implemented in hardware as a parameterisable IP core to increase performance. The codesign is split into three versions (Serial, Parallel and Pipeline) to provide flexibility when choosing the balance between resources and performance, allowing system designers to simplify the development process. Simulation results demonstrating two possible implementations of the design, a nanosatellite application and a Simultaneous Localisation and Mapping (SLAM) application, are presented. These results validate the performance of the HW/SW UKF and demonstrate its portability, particularly in small aerospace systems. Implementation (synthesis, timing, power) details for a variety of situations are presented and analysed to demonstrate how the HW/SW codesign can be scaled for any application

    A low complexity scaling method for the Lanczos Kernel in fixed-point arithmetic

    No full text
    We consider the problem of enabling fixed-point implementation of linear algebra kernels on low-cost embedded systems, as well as motivating more efficient computational architectures for scientific applications. Fixed-point arithmetic presents additional design challenges compared to floating-point arithmetic, such as having to bound peak values of variables and control their dynamic ranges. Algorithms for solving linear equations or finding eigenvalues are typically nonlinear and iterative, making solving these design challenges a nontrivial task. For these types of algorithms, the bounding problem cannot be automated by current tools. We focus on the Lanczos iteration, the heart of well-known methods such as conjugate gradient and minimum residual. We show how one can modify the algorithm with a low-complexity scaling procedure to allow us to apply standard linear algebra to derive tight analytical bounds on all variables of the process, regardless of the properties of the original matrix. It is shown that the numerical behavior of fixed-point implementations of the modified problem can be chosen to be at least as good as a floating-point implementation, if necessary. The approach is evaluated on field-programmable gate array (FPGA) platforms, highlighting orders of magnitude potential performance and efficiency improvements by moving form floating-point to fixed-point computation

    Large-Scale Direct Numerical Simulations of Turbulence Using GPUs and Modern Fortran

    Full text link
    We present our approach to making direct numerical simulations of turbulence with applications in sustainable shipping. We use modern Fortran and the spectral element method to leverage and scale on supercomputers powered by the Nvidia A100 and the recent AMD Instinct MI250X GPUs, while still providing support for user software developed in Fortran. We demonstrate the efficiency of our approach by performing the world's first direct numerical simulation of the flow around a Flettner rotor at Re=30'000 and its interaction with a turbulent boundary layer. We present one of the first performance comparisons between the AMD Instinct MI250X and Nvidia A100 GPUs for scalable computational fluid dynamics. Our results show that one MI250X offers performance on par with two A100 GPUs and has a similar power efficiency.Comment: 13 pages, 7 figure

    SPICE²: A Spatial, Parallel Architecture for Accelerating the Spice Circuit Simulator

    Get PDF
    Spatial processing of sparse, irregular floating-point computation using a single FPGA enables up to an order of magnitude speedup (mean 2.8X speedup) over a conventional microprocessor for the SPICE circuit simulator. We deliver this speedup using a hybrid parallel architecture that spatially implements the heterogeneous forms of parallelism available in SPICE. We decompose SPICE into its three constituent phases: Model-Evaluation, Sparse Matrix-Solve, and Iteration Control and parallelize each phase independently. We exploit data-parallel device evaluations in the Model-Evaluation phase, sparse dataflow parallelism in the Sparse Matrix-Solve phase and compose the complete design in streaming fashion. We name our parallel architecture SPICE²: Spatial Processors Interconnected for Concurrent Execution for accelerating the SPICE circuit simulator. We program the parallel architecture with a high-level, domain-specific framework that identifies, exposes and exploits parallelism available in the SPICE circuit simulator. This design is optimized with an auto-tuner that can scale the design to use larger FPGA capacities without expert intervention and can even target other parallel architectures with the assistance of automated code-generation. This FPGA architecture is able to outperform conventional processors due to a combination of factors including high utilization of statically-scheduled resources, low-overhead dataflow scheduling of fine-grained tasks, and overlapped processing of the control algorithms. We demonstrate that we can independently accelerate Model-Evaluation by a mean factor of 6.5X(1.4--23X) across a range of non-linear device models and Matrix-Solve by 2.4X(0.6--13X) across various benchmark matrices while delivering a mean combined speedup of 2.8X(0.2--11X) for the two together when comparing a Xilinx Virtex-6 LX760 (40nm) with an Intel Core i7 965 (45nm). With our high-level framework, we can also accelerate Single-Precision Model-Evaluation on NVIDIA GPUs, ATI GPUs, IBM Cell, and Sun Niagara 2 architectures. We expect approaches based on exploiting spatial parallelism to become important as frequency scaling slows down and modern processing architectures turn to parallelism (\eg multi-core, GPUs) due to constraints of power consumption. This thesis shows how to express, exploit and optimize spatial parallelism for an important class of problems that are challenging to parallelize.</p

    FPGA Acceleration of Domain-specific Kernels via High-Level Synthesis

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen
    corecore