643 research outputs found

    Wireless body sensor networks for health-monitoring applications

    Get PDF
    This is an author-created, un-copyedited version of an article accepted for publication in Physiological Measurement. The publisher is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at http://dx.doi.org/10.1088/0967-3334/29/11/R01

    Mobile ECG and SPO2 Chest Pain Subjective Indicators of Patient with GPS Location in Smart Cities

    Get PDF
    Subjective indicators of chest pain in this article describe a system based on devices for measuring ECG (Electrocardiogram) and SPO2 (Saturation of peripheral Oxygen) signals with PPG (Photoplethysmograph). The development system used for ECG detection signals is created in the SMT technology technique. Preparing for ECG (Electrocardiogram) signal analysis is realized on the coordinator side of the WSN (Wireless Sensor Network) node and LabView application interface. Existing model RPC-50E, as SPO2 detector is used for a measurement device. SPO2 performance upgrade was realized by installing hardware module XBee PRO S2B in the function of router-end device working mode. Except for ZigBee wireless transmission technology, it leaves a possibility to expand with Bluetooth module. The technical description is strictly related to the location of the patients using the GPS signal when it comes to undesirable measuring sizes of each decentralized measuring device. Possibilities to measure beats per second (bps) is also included in the measurement device for saturation of peripheral oxygen. Smart city integration is part of upgraded hardware which operates on the level of hospital cloud. With existing smart city infrastructure, it is easier to connect mobile IoT (Internet of Things) logger of ECG and SPO2 measurements. This article describes only the main reasons for chest pain. Acute and chronic chest pain is defined with ECG signal waveforms in certain cases. Measuring graphs are based on 12 measurement points that lead to the electrocardiogram device

    Pulse Signal System: Sensing, Data Acquisition and Body Area Network

    Get PDF
    Heart rate variability (HRV) is an important physiological signal of the human body, which can serve as a useful biomarker for the cardiovascular health status of an individual. There are many methods to measure the HRV using electrical devices, such as ECG and PPG etc. This work presents a novel HRV detection method which is based on pressure detection on the human wrist. This method has been compared with existing HRV detection methods. In this work, the proposed system for HRV detection is based on polyvinylidene difluoride (PVDF) sensor, which can measure tiny pressure on its surface. Three PVDF sensors are mounted on the wrist, and a three-channel conditioning circuit is used to amplify signals generated by the sensors. An analog-to-digital converter and Arduino microcontroller are used to sample and process the signal. Based on the obtained signals, the HRV can be processed and detected by the proposed PVDF-sensor-based system. Another contribution of this work is in designing a wireless body area network (WBAN) to transmit data acquired on the human body. This WBAN combines two different wireless network protocols, for both efficient power consumption and data rate. Bluetooth Low Energy protocol is used for transmitting data from the microcontroller to a personal device, and Wi-Fi is used to send data to other terminals. This provides the potential for remote HRV signal monitoring. A dataset consisting of two subjects was used to experimentally validate the proposed system design and signal processing method. ECG signals are acquired from subjects with wrist pulse signals for comparison as standard signal. The waveforms of ECG signals and wrist pulse signals are compared and HRV values are calculated from these two signals separately. The result shows that HRV calculated by wrist pulse has low error rate. A test of movement effect shows the sensor can resist mild motions of wrist. Some future improvements of system design and further signal processing methods are also discussed in the last chapter

    A Panoramic Study of Obstructive Sleep Apnea Detection Technologies

    Get PDF
    This study offers a literature research reference value for bioengineers and practitioner medical doctors. It could reduce research time and improve medical service efficiency regarding Obstructive Sleep Apnea (OSA) detection systems. Much of the past and the current apnea research, the vital signals features and parameters of the SA automatic detection are introduced.The applications for the earlier proposed systems and the related work on real-time and continuous monitoring of OSA and the analysis is given. The study concludes with an assessment of the current technologies highlighting their weaknesses and strengths which can set a roadmap for researchers and clinicians in this rapidly developing field of study

    Development of a Portable GSM SMS-Based Patient Monitoring System for Healthcare Applications

    Get PDF
    Although health care is a vital problem in recent years mobile communication has become a widespread part and parcel of everyday life even in the rural areas of developing countries This paper proposed a model to include the mobile communication for monitoring vital signs of health such as blood pressure heart rate body temperature blood glucose level and sends result as Short Message Service SMS for the physician so as to monitor their patients continuously Cuffless pressure sensing transducer is taken into consideration to measure pressure pulse and then combined with oscillometric method to measure Blood Pressure BP Availability of different sensors and measurement techniques to determine heart rate is presented Conventional glucometry in low cost electronics and body temperature measurement using electronic thermistor is also described here Sensed parameters are processed and stored into an array in ARM7 processor and sent via GSM SIM300 Modem This portable vital sensing system is useful to analyze daily health condition can be used both in home and hospital to prevent Hypertension Heart Attack and to control Diabete

    Using wearable sensors for remote healthcare monitoring system

    Get PDF
    Recent technological advances in wireless communications and wireless sensor networks have enabled the design of low-cost, intelligent, tiny, and lightweight medical sensor nodes that can be strategically placed on human body, create a wireless body area network (WBAN) to monitor various physiological vital signs for a long period of time and providing real-time feedback to the user and medical staff. WBANs promise to re-volutionize health monitoring. In this paper, medical sensors were used to collect physiological data from patients and transmit it to Intelligent Personal digital Assistant (IPDA) using ZigBee/IEEE802.15.4 standard and to medical server using 3G communications. We introduced priority scheduling and data compression into the system to increase transmission rate of physiological critical signals which improve the bandwidth utilization. It also extends the life time of hand-held personal server by reducing power consumption during transmission

    IoT-Based Applications in Healthcare Devices

    Get PDF
    The last decade has witnessed extensive research in the field of healthcare services and their technological upgradation. To be more specific, the Internet of Things (IoT) has shown potential application in connecting various medical devices, sensors, and healthcare professionals to provide quality medical services in a remote location. This has improved patient safety, reduced healthcare costs, enhanced the accessibility of healthcare services, and increased operational efficiency in the healthcare industry. The current study gives an up-to-date summary of the potential healthcare applications of IoT- (HIoT-) based technologies. Herein, the advancement of the application of the HIoT has been reported from the perspective of enabling technologies, healthcare services, and applications in solving various healthcare issues. Moreover, potential challenges and issues in the HIoT system are also discussed. In sum, the current study provides a comprehensive source of information regarding the different fields of application of HIoT intending to help future researchers, who have the interest to work and make advancements in the field to gain insight into the topic

    REAL TIME DATA ACQUISITION AND MONITORING OF PATIENTS WITH CORONARY HEART DISEASE IN A HOME ENVIRONMENT

    Get PDF
    The high mortality rate associated with cardiovascular related diseases requires the implementation of a personalised, ubiquitous health monitoring system. With the recent advancements of wireless sensor network technologies, these study proposes a real time data acquisition and monitoring system for patients with a track history of coronary heart diseases based on the implementation of a microcontroller, GSM Module and temperature sensors. This pervasive healthcare system will provide a round the clock monitoring and has an in built alerting mechanism for detecting anomalies in cardiac activities. The aim of the study is to minimize the need for caretakers and help the gravely ill senior citizens to survive an independent life. Apart from that, this study will help reduce the mortality rate of victim by shortening the response time of medical team to the victims. In these study, the proposed design mechanism will consider the following key criteria namely safety, data security, energy efficiency, durability and cost incurred
    • …
    corecore