6,275 research outputs found

    Port-Hamiltonian approaches to motion generation for mechanical systems

    Get PDF
    This paper gives new motion generation methods for mechanical port-Hamiltonian systems. First, we propose a generation method based on an asymptotic stabilization method without damping assignment. This asymptotic stabilization method preserves the Hamiltonian structure in the closed-loop system although the controller itself is not a port- Hamiltonian system. Second, we propose another method based on an adaptive asymptotic stabilization method for unknown damping. This adaptive asymptotic stabilizer does not use the value and the sign of the damping at all. Finally, we confirm the effectiveness of our techniques in some numerical simulation

    Unconditional measurement-based quantum computation with optomechanical continuous variables

    Get PDF
    Universal quantum computation encoded over continuous variables can be achieved via Gaussian measurements acting on entangled non-Gaussian states. However, due to the weakness of available nonlinearities, generally these states can only be prepared conditionally, potentially with low probability. Here we show how universal quantum computation could be implemented unconditionally using an integrated platform able to sustain both linear and quadratic optomechanical-like interactions. Specifically, considering cavity opto- and electro-mechanical systems, we propose a realisation of a driven-dissipative dynamics that deterministically prepares the required non-Gaussian cluster states --- entangled squeezed states of multiple mechanical oscillators suitably interspersed with cubic-phase states. We next demonstrate how arbitrary Gaussian measurements on the cluster nodes can be performed by continuously monitoring the output cavity field. Finally, the feasibility requirements of this approach are analysed in detail, suggesting that its building blocks are within reach of current technology.Comment: 5 pages + 9 pages supplementary materia

    Port-Hamiltonian systems: an introductory survey

    Get PDF
    The theory of port-Hamiltonian systems provides a framework for the geometric description of network models of physical systems. It turns out that port-based network models of physical systems immediately lend themselves to a Hamiltonian description. While the usual geometric approach to Hamiltonian systems is based on the canonical symplectic structure of the phase space or on a Poisson structure that is obtained by (symmetry) reduction of the phase space, in the case of a port-Hamiltonian system the geometric structure derives from the interconnection of its sub-systems. This motivates to consider Dirac structures instead of Poisson structures, since this notion enables one to define Hamiltonian systems with algebraic constraints. As a result, any power-conserving interconnection of port-Hamiltonian systems again defines a port-Hamiltonian system. The port-Hamiltonian description offers a systematic framework for analysis, control and simulation of complex physical systems, for lumped-parameter as well as for distributed-parameter models

    The geometric structure of nonholonomic mechanics

    Get PDF
    Many important problems in multibody dynamics, the dynamics of wheeled vehicles and motion generation, involve nonholonomic mechanics. Many of these systems have symmetry, such as the group of Euclidean motions in the plane or in space and this symmetry plays an important role in the theory. Despite considerable advances on both Hamiltonian and Lagrangian sides of the theory, there remains much to do. We report on progress on two of these fronts. The first is a Poisson description of the equations that is equivalent to those given by Lagrangian reduction, and second, a deeper understanding of holonomy for such systems. These results promise to lead to further progress on the stability issues and on locomotion generatio

    Putting energy back in control

    Get PDF
    A control system design technique using the principle of energy balancing was analyzed. Passivity-based control (PBC) techniques were used to analyze complex systems by decomposing them into simpler sub systems, which upon interconnection and total energy addition were helpful in determining the overall system behavior. An attempt to identify physical obstacles that hampered the use of PBC in applications other than mechanical systems was carried out. The technique was applicable to systems which were stabilized with passive controllers

    The SLH framework for modeling quantum input-output networks

    Full text link
    Many emerging quantum technologies demand precise engineering and control over networks consisting of quantum mechanical degrees of freedom connected by propagating electromagnetic fields, or quantum input-output networks. Here we review recent progress in theory and experiment related to such quantum input-output networks, with a focus on the SLH framework, a powerful modeling framework for networked quantum systems that is naturally endowed with properties such as modularity and hierarchy. We begin by explaining the physical approximations required to represent any individual node of a network, eg. atoms in cavity or a mechanical oscillator, and its coupling to quantum fields by an operator triple (S,L,H)(S,L,H). Then we explain how these nodes can be composed into a network with arbitrary connectivity, including coherent feedback channels, using algebraic rules, and how to derive the dynamics of network components and output fields. The second part of the review discusses several extensions to the basic SLH framework that expand its modeling capabilities, and the prospects for modeling integrated implementations of quantum input-output networks. In addition to summarizing major results and recent literature, we discuss the potential applications and limitations of the SLH framework and quantum input-output networks, with the intention of providing context to a reader unfamiliar with the field.Comment: 60 pages, 14 figures. We are still interested in receiving correction

    Controlling phonons and photons at the wavelength-scale: silicon photonics meets silicon phononics

    Get PDF
    Radio-frequency communication systems have long used bulk- and surface-acoustic-wave devices supporting ultrasonic mechanical waves to manipulate and sense signals. These devices have greatly improved our ability to process microwaves by interfacing them to orders-of-magnitude slower and lower loss mechanical fields. In parallel, long-distance communications have been dominated by low-loss infrared optical photons. As electrical signal processing and transmission approaches physical limits imposed by energy dissipation, optical links are now being actively considered for mobile and cloud technologies. Thus there is a strong driver for wavelength-scale mechanical wave or "phononic" circuitry fabricated by scalable semiconductor processes. With the advent of these circuits, new micro- and nanostructures that combine electrical, optical and mechanical elements have emerged. In these devices, such as optomechanical waveguides and resonators, optical photons and gigahertz phonons are ideally matched to one another as both have wavelengths on the order of micrometers. The development of phononic circuits has thus emerged as a vibrant field of research pursued for optical signal processing and sensing applications as well as emerging quantum technologies. In this review, we discuss the key physics and figures of merit underpinning this field. We also summarize the state of the art in nanoscale electro- and optomechanical systems with a focus on scalable platforms such as silicon. Finally, we give perspectives on what these new systems may bring and what challenges they face in the coming years. In particular, we believe hybrid electro- and optomechanical devices incorporating highly coherent and compact mechanical elements on a chip have significant untapped potential for electro-optic modulation, quantum microwave-to-optical photon conversion, sensing and microwave signal processing.Comment: 26 pages, 5 figure
    corecore