770 research outputs found

    Design, Fabrication, and Measurement of a Multiple-Input Multiple-Output (MIMO) Antenna for Mobile Communication

    Get PDF
    This thesis presents the design, fabrication and characterization of a multiband uniplanar MIMO antenna for hand-held mobile communication devices on LTE, WLAN, and WMAN networks. The antenna design methodology combined a variety of broadbanding techniques that resulted in a single-layer hybrid monopole antenna coupled to a meander line element and parasitic structures. The 115Ă—55Ă—1.54 mm antenna was fabricated using an FR4 composite material and occupies only a fractional volume within the size of an average cellular phone allowing ample space to integrate with existing hardware. Characterization of the MIMO antenna included input impedance, scattering parameters and radiation pattern cross sections that were all measured from 500-6500 MHz inside an anechoic chamber. The measurement results indicated four main operating regions of the multiband antenna centered at 875 MHz, 2300 MHz, 3500 MHz, and 5700 MHz with bandwidths of 240 MHz, 740 MHz, 190 MHz, and 370 MHz respectively. Scattering parameter measurements demonstrated excellent coverage of the desired communication spectrum, being able to operate on 30 of the 42 defined LTE bands, as well as common WLAN and WMAN bands. The radiation pattern cross sections in each of the operating regions showed non-directional behavior that is desirable for mobile communication devices. Additionally the envelope correlation coefficient calculated from the measured complex scattering parameters verified that the MIMO antenna achieved good system diversity. Overall, this work resulted in a multiband uniplanar MIMO antenna system suitable for hand-held mobile communication devices. Utilizing cost effective materials and simple geometries allowed fabrication using common methods. The novel antenna can support the high capacity required from evolving communication systems and represents a practical option for use within future generations of mobile devices

    User Effect Mitigation in MIMO Terminal Antennas

    Get PDF
    The rapid growth of cellular technology over the past decade transformed our lives, enabling billions of people to enjoy interactive multimedia content and ubiquitous connectivity through a device that can fit into the palm of a hand. In part the explosive growth of the smartphone market is enabled by innovative antenna system technologies, such as multiple-input multiple-output (MIMO) systems, facilitating high data rates and reliable connections. Even though future deployment of Long Term Evolution Advanced (LTE-A) is expected to provide seamless internet connectivity at even higher speeds over a wide range of devices with different form factors, fundamental terminal antenna limitations can severely impact the actual performance of the terminal. One of the key challenges in terminal antenna design are user-induced losses. It has been shown that electromagnetic absorption in body tissues as well as antenna impedance mismatch due to user proximity significantly degrade terminal antenna performance. Moreover, user interactions are non-static, which further complicates terminal design by leading to the requirement of evaluating a wide range of hand grips and usage scenarios. This doctoral thesis explores these challenges and offers useful insight on effective user interaction mitigation. In particular, state-of-the-art multiple antenna designs have been investigated in an attempt to formulate guidelines on efficient terminal antenna design in the presence of a user (Paper I). Moreover, the major part of the thesis considers the method of adaptive impedance matching (AIM) for performance enhancements of MIMO terminals. Both ideal and very practical and realistic AIM systems have been studied in order to extend the knowledge in the area by determining achievable performance gains and providing insights on AIM gain mechanisms for different terminal antenna designs, propagation environments and user scenarios. In Paper I, five different MIMO terminal antenna designs were evaluated in 11 representative user scenarios. Two of the prototypes were optimized with the Theory of Characteristic Modes (TCM), whereas the remaining three were based on more conventional antenna types. Multiplexing efficiency (ME) was used as the MIMO system performance metric, assuming an ideal uniform 3D propagation environment. The paper focuses on performance at frequency bands below 1 GHz due to the more stringent size limitations. Paper II presents a simulation model of the complete physical channel link based on ideal lossless AIM and evaluates the potential of AIM to mitigate user effects for three terminal antennas in four user scenarios. The prototypes studied have different performances in terms of bandwidth and isolation. MIMO capacity was used as the main performance metric. In order to gain insight on the impact of terminal bandwidth, as well as system bandwidth on AIM performance, capacity calculations were performed both for the center frequency and over the full LTE Band 13. In Paper III, a practical AIM system was set up and measured in both indoor and outdoor propagation scenarios for a one-hand and a two-hand grip, including a torso phantom. The AIM system consisted of two Maury mechanical tuners controlled with LabView. MIMO capacity was used to determine performance in the different user and channel cases. The impact of different propagation environments and user cases was discussed in detail. Moreover, tuner loss estimation was done to enable the calculation of AIM net gains. In Paper IV, the simulation model from Paper II was extended to include real antenna parameters as well as simulated environments with non-uniform angular power spectra. Two fundamentally different antenna designs were measured in three user scenarios involving phantom hands, whereas non-uniform environments of different angular spreads were simulated in post-processing. The study presents results and analysis on the impact of user scenarios and environment on the AIM gains for the terminals with different antenna designs. Finally, Paper V describes a realistic AIM system with custom-designed CMOS-SOI impedance tuners on a MIMO terminal antenna. Measurement setup control, as well as MIMO system evaluation, was achieved through a custom-developed LabView software. Detailed propagation measurements in three different environments with both phantom users and real test subjects were performed. The analysis and discussions provided insights on the practical implementation of AIM as well as on its performance in realistic conditions

    Statistical Review Evaluation of 5G Antenna Design Models from a Pragmatic Perspective under Multi-Domain Application Scenarios

    Get PDF
    Antenna design for the 5G spectrum requires analysis of contextual frequency bands, design of miniaturization techniques, gain improvement models, polarization techniques, standard radiation pattern designs, metamaterial integration, and substrate selection. Most of these models also vary in terms of qualitative & and quantitative parameters, which include forward gain levels, reverse gain, frequency response, substrate types, antenna shape, feeding levels, etc. Due to such a wide variety in performance, it is ambiguous for researchers to identify the optimum models for their application-specific use cases. This ambiguity results in validating these models on multiple simulation tools, which increases design delays and the cost of deployments. To reduce this ambiguity, a survey of recently proposed antenna design models is discussed in this text. This discussion recommended that polarization optimization and gain maximization are the major impact factors that must be considered while designing antennas. It is also recommended that collocated microstrip slot antennas, fully planar dual-polarized broadband antennas, and real-time deployments of combined slot antenna pairs with wide-band decoupling are very advantageous. Based on this discussion, researchers will be able to identify optimal performance-specific models for different applications. This discussion also compares underlying models in terms of their quantitative parameters, which include forward gain levels, bandwidth, complexity of deployment, scalability, and cost metrics. Upon referring to this comparison, researchers will be able to identify the optimum models for their performance-specific use cases. This review also formulates a novel Antenna Design Rank Metric (ADRM) that combines the evaluated parameters, thereby allowing readers to identify antenna design models that are optimized for multiple parameters and can be used for large-scale 5G communication scenarios

    Antenna Design for 5G and Beyond

    Get PDF
    With the rapid evolution of the wireless communications, fifth-generation (5G) communication has received much attention from both academia and industry, with many reported efforts and research outputs and significant improvements in different aspects, such as data rate speed and resolution, mobility, latency, etc. In some countries, the commercialization of 5G communication has already started as well as initial research of beyond technologies such as 6G.MIMO technology with multiple antennas is a promising technology to obtain the requirements of 5G/6G communications. It can significantly enhance the system capacity and resist multipath fading, and has become a hot spot in the field of wireless communications. This technology is a key component and probably the most established to truly reach the promised transfer data rates of future communication systems. In MIMO systems, multiple antennas are deployed at both the transmitter and receiver sides. The greater number of antennas can make the system more resistant to intentional jamming and interference. Massive MIMO with an especially high number of antennas can reduce energy consumption by targeting signals to individual users utilizing beamforming.Apart from sub-6 GHz frequency bands, 5G/6G devices are also expected to cover millimeter-wave (mmWave) and terahertz (THz) spectra. However, moving to higher bands will bring new challenges and will certainly require careful consideration of the antenna design for smart devices. Compact antennas arranged as conformal, planar, and linear arrays can be employed at different portions of base stations and user equipment to form phased arrays with high gain and directional radiation beams. The objective of this Special Issue is to cover all aspects of antenna designs used in existing or future wireless communication systems. The aim is to highlight recent advances, current trends, and possible future developments of 5G/6G antennas

    Over-The-Air Testing for Carrier Aggregation Enabled MIMO Terminals Using Radiated Two-Stage Method

    Get PDF

    Antenna System Design for 5G and Beyond – A Modal Approach

    Get PDF
    Antennas are one of the key components that empower a new generation of wireless technologies, such as 5G and new radar systems. It has been shown that antenna design strategies based on modal theories represent a powerful systematic approach to design practical antenna systems with high performance. In this thesis, several innovative multi-antenna systems are proposed for wireless applications in different frequency bands: from sub-6 GHz to millimeter-wave (mm-wave) bands. The thesis consists of an overview (Part I) and six scientific papers published in peer-reviewed international journals (Part II). Part I provides the overall framework of the thesis work: It presents the background and motivation for the problems at hand, the fundamental modal theories utilized to address these problems, as well as subject-specific research challenges. Brief conclusions and future outlook are also provided. The included papers of Part II can be divided into two tracks with different 5G and beyond wireless applications, both aiming for higher data rates.In the first track, Papers [I] to [IV] investigate different aspects of antenna system design for smart-phone application. Since Long Term Evolution (LTE) (so-called 3.5G) was deployed in 2009, mobile communication systems have utilized multiple-input multiple-output antenna technology (MIMO) technology to increase the spectral efficiency of the transmission channel and provide higher data rates in existing and new sub-6 GHz bands. However, MIMO requires multi-antennas at both the base stations and the user equipment (mainly smartphones) and it is very challenging to implement sub-6 GHz multi-antennas within the limited space of smartphones. This points to the need for innovative design strategies. The theory of characteristic modes (TCM) is one type of modal theory in the antenna community, which has been shown to be a versatile tool to analyze the inherent resonance properties of an arbitrarily shaped radiating structure. Characteristic modes (CMs) have the useful property of their fields being orthogonal over both the source region and the sphere at infinity. This property makes TCM uniquely suited for electrically compact MIMO antenna design.In the second track, Papers [V]-[VI] investigate new integrated antenna arrays and subarrays for the two wireless applications, which are both implemented in a higher part of the mm-wave frequency range (i.e. E-band). Furthermore, a newly developed high resolution multi-layer “Any-Layer” PCB technology is investigated to realize antenna-in-package solutions for these mmwave antenna system designs. High gain and high efficiency antennas are essential for high-speed wireless point-to-point communication systems. To meet these requirements, Paper [V] proposes directive multilayer substrate integrated waveguide (SIW) cavity-backed slot antenna array and subarray. As a background, the microwave community has already shown the benefits of modal theory in the design and analysis of closed structures like waveguides and cavities. Higher-order cavity modes are used in the antenna array design process to facilitate lower loss, simpler feeding network, and lower sensitivity to fabrication errors, which are favorable for E-band communication systems. However, waveguide/cavity modes are confined to fields within the guided media and can only help to design special types of antennas that contain those structures. As an example of the versatility of TCM, Paper [VI] shows that apart from smartphone antenna designs proposed in Papers [I]-[IV], TCM can alsobe used to find the desirable modes of the linear antenna arrays. Furthermore, apart from E-band communications, the proposed series-fed patch array topology in Paper [VI] is a good candidate for application in 79 GHz MIMO automotive radar due to its low cost, compact size, ability to suppress surface waves, as well as relatively wide impedance and flat-gain bandwidths

    Antenna Designs Aiming at the Next Generation of Wireless Communication

    Get PDF
    Millimeter-wave (mm-wave) frequencies have drawn large attention, specically for the fifth generation (5G) of wireless communication, due to their capability to provide high data-rates. However, design and characterization of the antenna system in wireless communication will face new challenges when we move up to higher frequency bands. The small size of the components at higher frequencies will make the integration of the antennas in the system almost inevitable. Therefore, the individual characterization of the antenna can become more challenging compared to the previous generations.This emphasizes the importance of having a reliable, simple and yet meaningful Over-the-Air (OTA) characterization method for the antenna systems. To avoid the complexity of using a variety of propagation environments in the OTA performance characterization, two extreme or edge scenarios for the propagation channels are presented, i.e., the Rich Isotropic Multipath (RIMP) and Random Line-of-Sight (Random-LoS). MIMO efficiency has been defined as a Figure of Merit (FoM), based on the Cumulative Distribution Function (CDF) of the received signal, due to the statistical behavior of the signal in both RIMP and Random-LoS. Considering this approach, we have improved the design of a wideband antenna for wireless application based on MIMO efficiency as the FoM of the OTA characterization in a Random-LoS propagation environment. We have shown that the power imbalance and the polarization orthogonality plays major roles determining the 2-bitstream MIMO performance of the antenna in Random-LoS. In addition, a wideband dual-polarized linear array is designed for an OTA Random-LoS measurement set-up for automotive wireless systems. The next generation of wireless communications is extended throughout multiple narrow frequency bands, varying within 20-70 GHz. Providing an individual antenna system for each of these bands may not be feasible in terms of cost, complexity and available physical space. Therefore, Ultra-Wideband (UWB) antenna arrays, coveringmultiple mm-wave frequency bands represent a versatile candidate for these antenna systems. In addition to having wideband characteristics, these antennas should offer an easy integration capability with the active modules. We present a new design of UWB planar arrays for mm-wave applications. The novelty is to propose planar antenna layouts to provide large bandwidth at mm-wave frequencies, using simplified standard PCB manufacturing techniques. The proposed antennas are based on Tightly Coupled Dipole Arrays (TCDAs) concept with integrated feeding network

    Antenna Designs for 5G/IoT and Space Applications

    Get PDF
    This book is intended to shed some light on recent advances in antenna design for these new emerging applications and identify further research areas in this exciting field of communications technologies. Considering the specificity of the operational environment, e.g., huge distance, moving support (satellite), huge temperature drift, small dimension with respect to the distance, etc, antennas, are the fundamental device allowing to maintain a constant interoperability between ground station and satellite, or different satellites. High gain, stable (in temperature, and time) performances, long lifecycle are some of the requirements that necessitates special attention with respect to standard designs. The chapters of this book discuss various aspects of the above-mentioned list presenting the view of the authors. Some of the contributors are working strictly in the field (space), so they have a very targeted view on the subjects, while others with a more academic background, proposes futuristic solutions. We hope that interested reader, will find a fertile source of information, that combined with their interest/background will allow efficiently exploiting the combination of these two perspectives
    • …
    corecore