796 research outputs found

    OCM 2023 - Optical Characterization of Materials : Conference Proceedings

    Get PDF
    The state of the art in the optical characterization of materials is advancing rapidly. New insights have been gained into the theoretical foundations of this research and exciting developments have been made in practice, driven by new applications and innovative sensor technologies that are constantly evolving. The great success of past conferences proves the necessity of a platform for presentation, discussion and evaluation of the latest research results in this interdisciplinary field

    OCM 2021 - Optical Characterization of Materials : Conference Proceedings

    Get PDF
    The state of the art in the optical characterization of materials is advancing rapidly. New insights have been gained into the theoretical foundations of this research and exciting developments have been made in practice, driven by new applications and innovative sensor technologies that are constantly evolving. The great success of past conferences proves the necessity of a platform for presentation, discussion and evaluation of the latest research results in this interdisciplinary field

    Biomedical Sensing and Imaging

    Get PDF
    This book mainly deals with recent advances in biomedical sensing and imaging. More recently, wearable/smart biosensors and devices, which facilitate diagnostics in a non-clinical setting, have become a hot topic. Combined with machine learning and artificial intelligence, they could revolutionize the biomedical diagnostic field. The aim of this book is to provide a research forum in biomedical sensing and imaging and extend the scientific frontier of this very important and significant biomedical endeavor

    OCM 2021 - Optical Characterization of Materials

    Get PDF
    The state of the art in the optical characterization of materials is advancing rapidly. New insights have been gained into the theoretical foundations of this research and exciting developments have been made in practice, driven by new applications and innovative sensor technologies that are constantly evolving. The great success of past conferences proves the necessity of a platform for presentation, discussion and evaluation of the latest research results in this interdisciplinary field

    Deep-tissue optical imaging of near cellular-sized features

    Get PDF
    Detection of biological features at the cellular level with sufcient sensitivity in complex tissue remains a major challenge. To appreciate this challenge, this would require fnding tens to hundreds of cells (a 0.1 mm tumor has ~125 cells), out of ~37 trillion cells in the human body. Near-infrared optical imaging holds promise for high-resolution, deep-tissue imaging, but is limited by autofuorescence and scattering. To date, the maximum reported depth using second-window near-infrared (NIR-II: 1000–1700 nm) fuorophores is 3.2 cm through tissue. Here, we design an NIR-II imaging system, “Detection of Optically Luminescent Probes using Hyperspectral and difuse Imaging in Near-infrared” (DOLPHIN), that resolves these challenges. DOLPHIN achieves the following: (i) resolution of probes through up to 8 cm of tissue phantom; (ii) identifcation of spectral and scattering signatures of tissues without a priori knowledge of background or autofuorescence; and (iii) 3D reconstruction of live whole animals. Notably, we demonstrate noninvasive real-time tracking of a 0.1 mm-sized fuorophore through the gastrointestinal tract of a living mouse, which is beyond the detection limit of current imaging modalities.Untied States. National Cancer Institute. Cancer Center Support (Grant P30-CA14051)United States. National Cancer Institute. Center for Cancer Nanotechnology Excellence (Grant 5-U54-CA151884-03

    Personalized medicine in surgical treatment combining tracking systems, augmented reality and 3D printing

    Get PDF
    Mención Internacional en el título de doctorIn the last twenty years, a new way of practicing medicine has been focusing on the problems and needs of each patient as an individual thanks to the significant advances in healthcare technology, the so-called personalized medicine. In surgical treatments, personalization has been possible thanks to key technologies adapted to the specific anatomy of each patient and the needs of the physicians. Tracking systems, augmented reality (AR), three-dimensional (3D) printing and artificial intelligence (AI) have previously supported this individualized medicine in many ways. However, their independent contributions show several limitations in terms of patient-to-image registration, lack of flexibility to adapt to the requirements of each case, large preoperative planning times, and navigation complexity. The main objective of this thesis is to increase patient personalization in surgical treatments by combining these technologies to bring surgical navigation to new complex cases by developing new patient registration methods, designing patient-specific tools, facilitating access to augmented reality by the medical community, and automating surgical workflows. In the first part of this dissertation, we present a novel framework for acral tumor resection combining intraoperative open-source navigation software, based on an optical tracking system, and desktop 3D printing. We used additive manufacturing to create a patient-specific mold that maintained the same position of the distal extremity during image-guided surgery as in the preoperative images. The feasibility of the proposed workflow was evaluated in two clinical cases (soft-tissue sarcomas in hand and foot). We achieved an overall accuracy of the system of 1.88 mm evaluated on the patient-specific 3D printed phantoms. Surgical navigation was feasible during both surgeries, allowing surgeons to verify the tumor resection margin. Then, we propose and augmented reality navigation system that uses 3D printed surgical guides with a tracking pattern enabling automatic patient-to-image registration in orthopedic oncology. This specific tool fits on the patient only in a pre-designed location, in this case bone tissue. This solution has been developed as a software application running on Microsoft HoloLens. The workflow was validated on a 3D printed phantom replicating the anatomy of a patient presenting an extraosseous Ewing’s sarcoma, and then tested during the actual surgical intervention. The results showed that the surgical guide with the reference marker can be placed precisely with an accuracy of 2 mm and a visualization error lower than 3 mm. The application allowed physicians to visualize the skin, bone, tumor and medical images overlaid on the phantom and patient. To enable the use of AR and 3D printing by inexperienced users without broad technical knowledge, we designed a step-by-step methodology. The proposed protocol describes how to develop an AR smartphone application that allows superimposing any patient-based 3D model onto a real-world environment using a 3D printed marker tracked by the smartphone camera. Our solution brings AR solutions closer to the final clinical user, combining free and open-source software with an open-access protocol. The proposed guide is already helping to accelerate the adoption of these technologies by medical professionals and researchers. In the next section of the thesis, we wanted to show the benefits of combining these technologies during different stages of the surgical workflow in orthopedic oncology. We designed a novel AR-based smartphone application that can display the patient’s anatomy and the tumor’s location. A 3D printed reference marker, designed to fit in a unique position of the affected bone tissue, enables automatic registration. The system has been evaluated in terms of visualization accuracy and usability during the whole surgical workflow on six realistic phantoms achieving a visualization error below 3 mm. The AR system was tested in two clinical cases during surgical planning, patient communication, and surgical intervention. These results and the positive feedback obtained from surgeons and patients suggest that the combination of AR and 3D printing can improve efficacy, accuracy, and patients’ experience In the final section, two surgical navigation systems have been developed and evaluated to guide electrode placement in sacral neurostimulation procedures based on optical tracking and augmented reality. Our results show that both systems could minimize patient discomfort and improve surgical outcomes by reducing needle insertion time and number of punctures. Additionally, we proposed a feasible clinical workflow for guiding SNS interventions with both navigation methodologies, including automatically creating sacral virtual 3D models for trajectory definition using artificial intelligence and intraoperative patient-to-image registration. To conclude, in this thesis we have demonstrated that the combination of technologies such as tracking systems, augmented reality, 3D printing, and artificial intelligence overcomes many current limitations in surgical treatments. Our results encourage the medical community to combine these technologies to improve surgical workflows and outcomes in more clinical scenarios.Programa de Doctorado en Ciencia y Tecnología Biomédica por la Universidad Carlos III de MadridPresidenta: María Jesús Ledesma Carbayo.- Secretaria: María Arrate Muñoz Barrutia.- Vocal: Csaba Pinte

    下腹部を対象とした極細針によるCTガイド下高正確度穿刺プランニング

    Get PDF
    早大学位記番号:新8149早稲田大

    Postural injury risk assessment for industrial processes using advanced sensory systems

    Full text link
    The major contributions of this research delivered both advancements and novel frameworks to enhance the current methods of postural assessments within industrial environments. This included the development of load vs repetition analysis, A novel BVH Model and a low cost ergonomic scoring tool relying on pixel labelling

    A Novel Bio-Inspired Insertion Method for Application to Next Generation Percutaneous Surgical Tools

    No full text
    The use of minimally invasive techniques can dramatically improve patient outcome from neurosurgery, with less risk, faster recovery, and better cost effectiveness when compared to conventional surgical intervention. To achieve this, innovative surgical techniques and new surgical instruments have been developed. Nevertheless, the simplest and most common interventional technique for brain surgery is needle insertion for either diagnostic or therapeutic purposes. The work presented in this thesis shows a new approach to needle insertion into soft tissue, focussing on soft tissue-needle interaction by exploiting microtextured topography and the unique mechanism of a reciprocating motion inspired by the ovipositor of certain parasitic wasps. This thesis starts by developing a brain-like phantom which I was shown to have mechanical properties similar to those of neurological tissue during needle insertion. Secondly, a proof-of-concept of the bio-inspired insertion method was undertaken. Based on this finding, the novel method of a multi-part probe able to penetrate a soft substrate by reciprocal motion of each segment is derived. The advantages of the new insertion method were investigated and compared with a conventional needle insertion in terms of needle-tissue interaction. The soft tissue deformation and damage were also measured by exploiting the method of particle image velocimetry. Finally, the thesis proposes the possible clinical application of a biologically-inspired surface topography for deep brain electrode implantation. As an adjunct to this work, the reciprocal insertion method described here fuelled the research into a novel flexible soft tissue probe for percutaneous intervention, which is able to steer along curvilinear trajectories within a compliant medium. Aspects of this multi-disciplinary research effort on steerable robotic surgery are presented, followed by a discussion of the implications of these findings within the context of future work
    corecore