124,630 research outputs found

    A neural network-based framework for financial model calibration

    Full text link
    A data-driven approach called CaNN (Calibration Neural Network) is proposed to calibrate financial asset price models using an Artificial Neural Network (ANN). Determining optimal values of the model parameters is formulated as training hidden neurons within a machine learning framework, based on available financial option prices. The framework consists of two parts: a forward pass in which we train the weights of the ANN off-line, valuing options under many different asset model parameter settings; and a backward pass, in which we evaluate the trained ANN-solver on-line, aiming to find the weights of the neurons in the input layer. The rapid on-line learning of implied volatility by ANNs, in combination with the use of an adapted parallel global optimization method, tackles the computation bottleneck and provides a fast and reliable technique for calibrating model parameters while avoiding, as much as possible, getting stuck in local minima. Numerical experiments confirm that this machine-learning framework can be employed to calibrate parameters of high-dimensional stochastic volatility models efficiently and accurately.Comment: 34 pages, 9 figures, 11 table

    Self-Adaptive Surrogate-Assisted Covariance Matrix Adaptation Evolution Strategy

    Get PDF
    This paper presents a novel mechanism to adapt surrogate-assisted population-based algorithms. This mechanism is applied to ACM-ES, a recently proposed surrogate-assisted variant of CMA-ES. The resulting algorithm, saACM-ES, adjusts online the lifelength of the current surrogate model (the number of CMA-ES generations before learning a new surrogate) and the surrogate hyper-parameters. Both heuristics significantly improve the quality of the surrogate model, yielding a significant speed-up of saACM-ES compared to the ACM-ES and CMA-ES baselines. The empirical validation of saACM-ES on the BBOB-2012 noiseless testbed demonstrates the efficiency and the scalability w.r.t the problem dimension and the population size of the proposed approach, that reaches new best results on some of the benchmark problems.Comment: Genetic and Evolutionary Computation Conference (GECCO 2012) (2012
    • …
    corecore