189,466 research outputs found

    Population genomics of domestic and wild yeasts

    Get PDF
    The natural genetics of an organism is determined by the distribution of sequences of its genome. Here we present one- to four-fold, with some deeper, coverage of the genome sequences of over seventy isolates of the domesticated baker's yeast, _Saccharomyces cerevisiae_, and its closest relative, the wild _S. paradoxus_, which has never been associated with human activity. These were collected from numerous geographic locations and sources (including wild, clinical, baking, wine, laboratory and food spoilage). These sequences provide an unprecedented view of the population structure, natural (and artificial) selection and genome evolution in these species. Variation in gene content, SNPs, indels, copy numbers and transposable elements provide insights into the evolution of different lineages. Phenotypic variation broadly correlates with global genome-wide phylogenetic relationships however there is no correlation with source. _S. paradoxus_ populations are well delineated along geographic boundaries while the variation among worldwide _S. cerevisiae_ isolates show less differentiation and is comparable to a single _S. paradoxus_ population. Rather than one or two domestication events leading to the extant baker's yeasts, the population structure of _S. cerevisiae_ shows a few well defined geographically isolated lineages and many different mosaics of these lineages, supporting the notion that human influence provided the opportunity for outbreeding and production of new combinations of pre-existing variation

    Fundamental properties of Fanaroff-Riley II radio galaxies investigated via Monte Carlo simulations

    Full text link
    [Abridged] Radio galaxies and quasars are among the largest and most powerful single objects known and are believed to have had a significant impact on the evolving Universe and its large scale structure. We explore the intrinsic and extrinsic properties of the population of FRII objects (kinetic luminosities, lifetimes, and the central densities of their environments). In particular, the radio and kinetic luminosity functions of FRIIs are investigated using the complete, flux limited radio catalogues of 3CRR and Best et al. We construct multidimensional Monte Carlo simulations using semi-analytical models of FRII radio source growth to create artificial samples of radio galaxies. Unlike previous studies, we compare radio luminosity functions found with both the observed and simulated data to explore the fundamental source parameters. We allow the source physical properties to co-evolve with redshift, and we find that all the investigated parameters most likely undergo cosmological evolution. Strikingly, we find that the break in the kinetic luminosity function must undergo redshift evolution of at least (1+z)^3. The fundamental parameters are strongly degenerate, and independent constraints are necessary to draw more precise conclusions. We use the estimated kinetic luminosity functions to set constraints on the duty cycles of these powerful radio sources. A comparison of the duty cycles of powerful FRIIs with those determined from radiative luminosities of AGN of comparable black hole mass suggests a transition in behaviour from high to low redshifts, corresponding to either a drop in the typical black hole mass of powerful FRIIs at low redshifts, or a transition to a kinetically-dominated, radiatively-inefficient FRII population.Comment: Accepted to MNRAS. 30 pages, 18 figures, 4 tables + online material (in appendix): 9 pages, 14 figure

    Improving the adaptability of simulated evolutionary swarm robots in dynamically changing environments

    Get PDF
    One of the important challenges in the field of evolutionary robotics is the development of systems that can adapt to a changing environment. However, the ability to adapt to unknown and fluctuating environments is not straightforward. Here, we explore the adaptive potential of simulated swarm robots that contain a genomic encoding of a bio-inspired gene regulatory network (GRN). An artificial genome is combined with a flexible agent-based system, representing the activated part of the regulatory network that transduces environmental cues into phenotypic behaviour. Using an artificial life simulation framework that mimics a dynamically changing environment, we show that separating the static from the conditionally active part of the network contributes to a better adaptive behaviour. Furthermore, in contrast with most hitherto developed ANN-based systems that need to re-optimize their complete controller network from scratch each time they are subjected to novel conditions, our system uses its genome to store GRNs whose performance was optimized under a particular environmental condition for a sufficiently long time. When subjected to a new environment, the previous condition-specific GRN might become inactivated, but remains present. This ability to store 'good behaviour' and to disconnect it from the novel rewiring that is essential under a new condition allows faster re-adaptation if any of the previously observed environmental conditions is reencountered. As we show here, applying these evolutionary-based principles leads to accelerated and improved adaptive evolution in a non-stable environment

    Evolving collective behavior in an artificial ecology

    Get PDF
    Collective behavior refers to coordinated group motion, common to many animals. The dynamics of a group can be seen as a distributed model, each ā€œanimalā€ applying the same rule set. This study investigates the use of evolved sensory controllers to produce schooling behavior. A set of artificial creatures ā€œliveā€ in an artificial world with hazards and food. Each creature has a simple artificial neural network brain that controls movement in different situations. A chromosome encodes the network structure and weights, which may be combined using artificial evolution with another chromosome, if a creature should choose to mate. Prey and predators coevolve without an explicit fitness function for schooling to produce sophisticated, nondeterministic, behavior. The work highlights the role of speciesā€™ physiology in understanding behavior and the role of the environment in encouraging the development of sensory systems

    Origin of life in a digital microcosm

    Full text link
    While all organisms on Earth descend from a common ancestor, there is no consensus on whether the origin of this ancestral self-replicator was a one-off event or whether it was only the final survivor of multiple origins. Here we use the digital evolution system Avida to study the origin of self-replicating computer programs. By using a computational system, we avoid many of the uncertainties inherent in any biochemical system of self-replicators (while running the risk of ignoring a fundamental aspect of biochemistry). We generated the exhaustive set of minimal-genome self-replicators and analyzed the network structure of this fitness landscape. We further examined the evolvability of these self-replicators and found that the evolvability of a self-replicator is dependent on its genomic architecture. We studied the differential ability of replicators to take over the population when competed against each other (akin to a primordial-soup model of biogenesis) and found that the probability of a self-replicator out-competing the others is not uniform. Instead, progenitor (most-recent common ancestor) genotypes are clustered in a small region of the replicator space. Our results demonstrate how computational systems can be used as test systems for hypotheses concerning the origin of life.Comment: 20 pages, 7 figures. To appear in special issue of Philosophical Transactions of the Royal Society A: Re-Conceptualizing the Origins of Life from a Physical Sciences Perspectiv

    Evolutionary Neural Gas (ENG): A Model of Self Organizing Network from Input Categorization

    Full text link
    Despite their claimed biological plausibility, most self organizing networks have strict topological constraints and consequently they cannot take into account a wide range of external stimuli. Furthermore their evolution is conditioned by deterministic laws which often are not correlated with the structural parameters and the global status of the network, as it should happen in a real biological system. In nature the environmental inputs are noise affected and fuzzy. Which thing sets the problem to investigate the possibility of emergent behaviour in a not strictly constrained net and subjected to different inputs. It is here presented a new model of Evolutionary Neural Gas (ENG) with any topological constraints, trained by probabilistic laws depending on the local distortion errors and the network dimension. The network is considered as a population of nodes that coexist in an ecosystem sharing local and global resources. Those particular features allow the network to quickly adapt to the environment, according to its dimensions. The ENG model analysis shows that the net evolves as a scale-free graph, and justifies in a deeply physical sense- the term gas here used.Comment: 16 pages, 8 figure
    • ā€¦
    corecore