55,611 research outputs found

    An assessment of empirical Bayes and composite estimators for small areas

    Get PDF
    We compare a set of empirical Bayes and composite estimators of the population means of the districts (small areas) of a country, and show that the natural modelling strategy of searching for a well fitting empirical Bayes model and using it for estimation of the area-level means can be inefficient.Composite estimator, empirical Bayes models, mean squared error, small-area estimation

    A Nonparametric Bayesian Approach to Uncovering Rat Hippocampal Population Codes During Spatial Navigation

    Get PDF
    Rodent hippocampal population codes represent important spatial information about the environment during navigation. Several computational methods have been developed to uncover the neural representation of spatial topology embedded in rodent hippocampal ensemble spike activity. Here we extend our previous work and propose a nonparametric Bayesian approach to infer rat hippocampal population codes during spatial navigation. To tackle the model selection problem, we leverage a nonparametric Bayesian model. Specifically, to analyze rat hippocampal ensemble spiking activity, we apply a hierarchical Dirichlet process-hidden Markov model (HDP-HMM) using two Bayesian inference methods, one based on Markov chain Monte Carlo (MCMC) and the other based on variational Bayes (VB). We demonstrate the effectiveness of our Bayesian approaches on recordings from a freely-behaving rat navigating in an open field environment. We find that MCMC-based inference with Hamiltonian Monte Carlo (HMC) hyperparameter sampling is flexible and efficient, and outperforms VB and MCMC approaches with hyperparameters set by empirical Bayes

    Improving population-specific allele frequency estimates by adapting supplemental data: an empirical Bayes approach

    Full text link
    Estimation of the allele frequency at genetic markers is a key ingredient in biological and biomedical research, such as studies of human genetic variation or of the genetic etiology of heritable traits. As genetic data becomes increasingly available, investigators face a dilemma: when should data from other studies and population subgroups be pooled with the primary data? Pooling additional samples will generally reduce the variance of the frequency estimates; however, used inappropriately, pooled estimates can be severely biased due to population stratification. Because of this potential bias, most investigators avoid pooling, even for samples with the same ethnic background and residing on the same continent. Here, we propose an empirical Bayes approach for estimating allele frequencies of single nucleotide polymorphisms. This procedure adaptively incorporates genotypes from related samples, so that more similar samples have a greater influence on the estimates. In every example we have considered, our estimator achieves a mean squared error (MSE) that is smaller than either pooling or not, and sometimes substantially improves over both extremes. The bias introduced is small, as is shown by a simulation study that is carefully matched to a real data example. Our method is particularly useful when small groups of individuals are genotyped at a large number of markers, a situation we are likely to encounter in a genome-wide association study.Comment: Published in at http://dx.doi.org/10.1214/07-AOAS121 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Computing analytic Bayes factors from summary statistics in repeated-measures designs

    Full text link
    Bayes factors are an increasingly popular tool for indexing evidence from experiments. For two competing population models, the Bayes factor reflects the relative likelihood of observing some data under one model compared to the other. In general, computing a Bayes factor is difficult, because computing the marginal likelihood of each model requires integrating the product of the likelihood and a prior distribution on the population parameter(s). In this paper, we develop a new analytic formula for computing Bayes factors directly from minimal summary statistics in repeated-measures designs. This work is an improvement on previous methods for computing Bayes factors from summary statistics (e.g., the BIC method), which produce Bayes factors that violate the Sellke upper bound of evidence for smaller sample sizes. The new approach taken in this paper extends requires knowing only the FF-statistic and degrees of freedom, both of which are commonly reported in most empirical work. In addition to providing computational examples, we report a simulation study that benchmarks the new formula against other methods for computing Bayes factors in repeated-measures designs. Our new method provides an easy way for researchers to compute Bayes factors directly from a minimal set of summary statistics, allowing users to index the evidential value of their own data, as well as data reported in published studies
    • …
    corecore