494 research outputs found

    Ontology Population via NLP Techniques in Risk Management

    Get PDF
    In this paper we propose an NLP-based method for Ontology Population from texts and apply it to semi automatic instantiate a Generic Knowledge Base (Generic Domain Ontology) in the risk management domain. The approach is semi-automatic and uses a domain expert intervention for validation. The proposed approach relies on a set of Instances Recognition Rules based on syntactic structures, and on the predicative power of verbs in the instantiation process. It is not domain dependent since it heavily relies on linguistic knowledge. A description of an experiment performed on a part of the ontology of the PRIMA project (supported by the European community) is given. A first validation of the method is done by populating this ontology with Chemical Fact Sheets from Environmental Protection Agency . The results of this experiment complete the paper and support the hypothesis that relying on the predicative power of verbs in the instantiation process improves the performance.Information Extraction, Instance Recognition Rules, Ontology Population, Risk Management, Semantic Analysis

    Ontologies and Information Extraction

    Full text link
    This report argues that, even in the simplest cases, IE is an ontology-driven process. It is not a mere text filtering method based on simple pattern matching and keywords, because the extracted pieces of texts are interpreted with respect to a predefined partial domain model. This report shows that depending on the nature and the depth of the interpretation to be done for extracting the information, more or less knowledge must be involved. This report is mainly illustrated in biology, a domain in which there are critical needs for content-based exploration of the scientific literature and which becomes a major application domain for IE

    Textpresso for Neuroscience: Searching the Full Text of Thousands of Neuroscience Research Papers

    Get PDF
    Textpresso is a text-mining system for scientific literature. Its two major features are access to the full text of research papers and the development and use of categories of biological concepts as well as categories that describe or relate objects. A search engine enables the user to search for one or a combination of these categories and/or keywords within an entire literature. Here we describe Textpresso for Neuroscience, part of the core Neuroscience Information Framework (NIF). The Textpresso site currently consists of 67,500 full text papers and 131,300 abstracts. We show that using categories in literature can make a pure keyword query more refined and meaningful. We also show how semantic queries can be formulated with categories only. We explain the build and content of the database and describe the main features of the web pages and the advanced search options. We also give detailed illustrations of the web service developed to provide programmatic access to Textpresso. This web service is used by the NIF interface to access Textpresso. The standalone website of Textpresso for Neuroscience can be accessed at http://www.textpresso.org/neuroscience

    Building Quranic stories ontology using MappingMaster domain-specific language

    Get PDF
    The Holy Quran, due to it is full of many inspiring stories and multiple lessons that need to understand it requires additional attention when it comes to searching issues and information retrieval. Many works were carried out in the Holy Quran field, but some of these dealt with a part of the Quran or covered it in general, and some of them did not support semantic research techniques and the possibility of understanding the Quranic knowledge by the people and computers. As for others, techniques of data analysis, processing, and ontology were adopted, which led to directed these to linguistic aspects more than semantic. Another weakness in the previous works, they have adopted the method manually entering ontology, which is costly and time-consuming. In this paper, we constructed the ontology of Quranic stories. This ontology depended in its construction on the MappingMaster domain-specific language (MappingMaster DSL)technology, through which concepts and individuals can be created and linked automatically to the ontology from Excel sheets. The conceptual structure was built using the object role modeling (ORM) modeling language. SPARQL query language used to test and evaluate the propsed ontology by asking many competency questions and as a result, the ontology answered all these questions well

    Information extraction from medication leaflets

    Get PDF
    Tese de mestrado integrado. Engenharia Informática e Computação. Faculdade de Engenharia. Universidade do Porto. 201

    Social and Semantic Web Technologies for the Text-To-Knowledge Translation Process in Biomedicine

    Get PDF
    Currently, biomedical research critically depends on knowledge availability for flexible re-analysis and integrative post-processing. The voluminous biological data already stored in databases, put together with the abundant molecular data resulting from the rapid adoption of high-throughput techniques, have shown the potential to generate new biomedical discovery through integration with knowledge from the scientific literature. Reliable information extraction applications have been a long-sought goal of the biomedical text mining community. Both named entity recognition and conceptual analysis are needed in order to map the objects and concepts represented by natural language texts into a rigorous encoding, with direct links to online resources that explicitly expose those concepts semantics (see Figure 1).P08-TIC-4299 of J. ASevilla and TIN2009-13489 of DGICT, Madri

    SCRE:special cargo relation extraction using representation learning

    Get PDF
    The airfreight industry of shipping goods with special handling needs, also known as special cargo, often deals with non-transparent data and outdated technology, resulting in significant inefficiency. A special cargo ontology is a means of extracting, structuring, and storing domain knowledge and representing the concepts and relationships that can be processed by computers. This ontology can be used as the base of semantic data retrieval in many artificial intelligence applications, such as planning for special cargo shipments. Domain information extraction is an essential task in implementing and maintaining special cargo ontology. However, the absence of domain information makes instantiating the cargo ontology challenging. We propose a relation representation learning approach based on a hierarchical attention-based multi-task model and leverage it in the special cargo domain. The proposed relation representation learning architecture is applied for identifying and categorizing samples of various relation types in the special cargo ontology. The model is trained with domain-specific documents on a number of semantic tasks that vary from lightweight tasks in the bottom layers to the heavyweight tasks in the top layers of the model in a hierarchical setting. Therefore, it conveys complementary input features and learns a rich representation. We also train a domain-specific relation representation model that relies only on an entity-linked corpus of cargo shipment domain. These two relation representation models are then employed in a supervised multi-class classifier called Special Cargo Relation Extractor (SCRE). The results of the experiments show that the proposed relation representation models can represent the complex semantic information of the special cargo domain efficiently.</p
    • …
    corecore