2,905 research outputs found

    Machine Learning for Financial Prediction Under Regime Change Using Technical Analysis: A Systematic Review

    Get PDF
    Recent crises, recessions and bubbles have stressed the non-stationary nature and the presence of drastic structural changes in the financial domain. The most recent literature suggests the use of conventional machine learning and statistical approaches in this context. Unfortunately, several of these techniques are unable or slow to adapt to changes in the price-generation process. This study aims to survey the relevant literature on Machine Learning for financial prediction under regime change employing a systematic approach. It reviews key papers with a special emphasis on technical analysis. The study discusses the growing number of contributions that are bridging the gap between two separate communities, one focused on data stream learning and the other on economic research. However, it also makes apparent that we are still in an early stage. The range of machine learning algorithms that have been tested in this domain is very wide, but the results of the study do not suggest that currently there is a specific technique that is clearly dominant

    Introductory Chapter: Data Streams and Online Learning in Social Media

    Get PDF

    Pinterest Board Recommendation for Twitter Users

    Full text link
    Pinboard on Pinterest is an emerging media to engage online social media users, on which users post online images for specific topics. Regardless of its significance, there is little previous work specifically to facilitate information discovery based on pinboards. This paper proposes a novel pinboard recommendation system for Twitter users. In order to associate contents from the two social media platforms, we propose to use MultiLabel classification to map Twitter user followees to pinboard topics and visual diversification to recommend pinboards given user interested topics. A preliminary experiment on a dataset with 2000 users validated our proposed system

    Considering temporal aspects in recommender systems: a survey

    Get PDF
    Under embargo until: 2023-07-04The widespread use of temporal aspects in user modeling indicates their importance, and their consideration showed to be highly effective in various domains related to user modeling, especially in recommender systems. Still, past and ongoing research, spread over several decades, provided multiple ad-hoc solutions, but no common understanding of the issue. There is no standardization and there is often little commonality in considering temporal aspects in different applications. This may ultimately lead to the problem that application developers define ad-hoc solutions for their problems at hand, sometimes missing or neglecting aspects that proved to be effective in similar cases. Therefore, a comprehensive survey of the consideration of temporal aspects in recommender systems is required. In this work, we provide an overview of various time-related aspects, categorize existing research, present a temporal abstraction and point to gaps that require future research. We anticipate this survey will become a reference point for researchers and practitioners alike when considering the potential application of temporal aspects in their personalized applications.acceptedVersio

    Computational Aesthetics for Fashion

    Get PDF
    The online fashion industry is growing fast and with it, the need for advanced systems able to automatically solve different tasks in an accurate way. With the rapid advance of digital technologies, Deep Learning has played an important role in Computational Aesthetics, an interdisciplinary area that tries to bridge fine art, design, and computer science. Specifically, Computational Aesthetics aims to automatize human aesthetic judgments with computational methods. In this thesis, we focus on three applications of computer vision in fashion, and we discuss how Computational Aesthetics helps solve them accurately

    Labelled Classifier with Weighted Drift Trigger Model using Machine Learning for Streaming Data Analysis

    Get PDF
    The term “data-drift” refers to a difference between the data used to test and validate a model and the data used to deploy it in production. It is possible for data to drift for a variety of reasons. The track of time is an important consideration. Data mining procedures such as classification, clustering, and data stream mining are critical to information extraction and knowledge discovery because of the possibility for significant data type and dimensionality changes over time. The amount of research on mining and analyzing real-time streaming data has risen dramatically in the recent decade. As the name suggests, it’s a stream of data that originates from a number of sources. Analyzing information assets has taken on increased significance in the quest for real-time analytics fulfilment. Traditional mining methods are no longer effective since data is acting in a different way. Aside from storage and temporal constraints, data streams provide additional challenges because just a single pass of the data is required. The dynamic nature of data streams makes it difficult to run any mining method, such as classification, clustering, or indexing, in a single iteration of data. This research identifies concept drift in streaming data classification. For data classification techniques, a Labelled Classifier with Weighted Drift Trigger Model (LCWDTM) is proposed that provides categorization and the capacity to tackle concept drift difficulties. The proposed classifier efficiency is contrasted with the existing classifiers and the results represent that the proposed model in data drift detection is accurate and efficient

    A survey of machine learning techniques applied to self organizing cellular networks

    Get PDF
    In this paper, a survey of the literature of the past fifteen years involving Machine Learning (ML) algorithms applied to self organizing cellular networks is performed. In order for future networks to overcome the current limitations and address the issues of current cellular systems, it is clear that more intelligence needs to be deployed, so that a fully autonomous and flexible network can be enabled. This paper focuses on the learning perspective of Self Organizing Networks (SON) solutions and provides, not only an overview of the most common ML techniques encountered in cellular networks, but also manages to classify each paper in terms of its learning solution, while also giving some examples. The authors also classify each paper in terms of its self-organizing use-case and discuss how each proposed solution performed. In addition, a comparison between the most commonly found ML algorithms in terms of certain SON metrics is performed and general guidelines on when to choose each ML algorithm for each SON function are proposed. Lastly, this work also provides future research directions and new paradigms that the use of more robust and intelligent algorithms, together with data gathered by operators, can bring to the cellular networks domain and fully enable the concept of SON in the near future
    • …
    corecore