1,216 research outputs found

    Continuous-time integral dynamics for Aggregative Game equilibrium seeking

    Get PDF
    In this paper, we consider continuous-time semi-decentralized dynamics for the equilibrium computation in a class of aggregative games. Specifically, we propose a scheme where decentralized projected-gradient dynamics are driven by an integral control law. To prove global exponential convergence of the proposed dynamics to an aggregative equilibrium, we adopt a quadratic Lyapunov function argument. We derive a sufficient condition for global convergence that we position within the recent literature on aggregative games, and in particular we show that it improves on established results

    A cognitive hierarchy theory of one-shot games: Some preliminary results

    Get PDF
    Strategic thinking, best-response, and mutual consistency (equilibrium) are three key modelling principles in noncooperative game theory. This paper relaxes mutual consistency to predict how players are likely to behave in in one-shot games before they can learn to equilibrate. We introduce a one-parameter cognitive hierarchy (CH) model to predict behavior in one-shot games, and initial conditions in repeated games. The CH approach assumes that players use k steps of reasoning with frequency f (k). Zero-step players randomize. Players using k (≥ 1) steps best respond given partially rational expectations about what players doing 0 through k - 1 steps actually choose. A simple axiom which expresses the intuition that steps of thinking are increasingly constrained by working memory, implies that f (k) has a Poisson distribution (characterized by a mean number of thinking steps τ ). The CH model converges to dominance-solvable equilibria when τ is large, predicts monotonic entry in binary entry games for τ < 1:25, and predicts effects of group size which are not predicted by Nash equilibrium. Best-fitting values of τ have an interquartile range of (.98,2.40) and a median of 1.65 across 80 experimental samples of matrix games, entry games, mixed-equilibrium games, and dominance-solvable p-beauty contests. The CH model also has economic value because subjects would have raised their earnings substantially if they had best-responded to model forecasts instead of making the choices they did

    Rewarding cooperation in social dilemmas

    Get PDF
    One of the most direct human mechanisms of promoting cooperation is rewarding it. We study the effect of sharing a reward among cooperators in the most stringent form of social dilemma. Thus, individuals confront a new dilemma: on the one hand, they may be inclined to choose the shared reward despite the possibility of being exploited by defectors; on the other hand, if too many players do that, cooperators will obtain a poor reward and defectors will outperform them. By appropriately tuning the amount to be shared we can cast a vast variety of scenarios, including traditional ones in the study of cooperation as well as more complex situations where unexpected behavior can occur. We provide a complete classification of the equilibria of the nplayer game as well as of the evolutionary dynamics. Beyond, we extend our analysis to a general class of public good games where competition among individuals with the same strategy exists

    A Douglas-Rachford splitting for semi-decentralized equilibrium seeking in generalized aggregative games

    Full text link
    We address the generalized aggregative equilibrium seeking problem for noncooperative agents playing average aggregative games with affine coupling constraints. First, we use operator theory to characterize the generalized aggregative equilibria of the game as the zeros of a monotone set-valued operator. Then, we massage the Douglas-Rachford splitting to solve the monotone inclusion problem and derive a single layer, semi-decentralized algorithm whose global convergence is guaranteed under mild assumptions. The potential of the proposed Douglas-Rachford algorithm is shown on a simplified resource allocation game, where we observe faster convergence with respect to forward-backward algorithms.Comment: arXiv admin note: text overlap with arXiv:1803.1044

    Distributed Learning Policies for Power Allocation in Multiple Access Channels

    Full text link
    We analyze the problem of distributed power allocation for orthogonal multiple access channels by considering a continuous non-cooperative game whose strategy space represents the users' distribution of transmission power over the network's channels. When the channels are static, we find that this game admits an exact potential function and this allows us to show that it has a unique equilibrium almost surely. Furthermore, using the game's potential property, we derive a modified version of the replicator dynamics of evolutionary game theory which applies to this continuous game, and we show that if the network's users employ a distributed learning scheme based on these dynamics, then they converge to equilibrium exponentially quickly. On the other hand, a major challenge occurs if the channels do not remain static but fluctuate stochastically over time, following a stationary ergodic process. In that case, the associated ergodic game still admits a unique equilibrium, but the learning analysis becomes much more complicated because the replicator dynamics are no longer deterministic. Nonetheless, by employing results from the theory of stochastic approximation, we show that users still converge to the game's unique equilibrium. Our analysis hinges on a game-theoretical result which is of independent interest: in finite player games which admit a (possibly nonlinear) convex potential function, the replicator dynamics (suitably modified to account for nonlinear payoffs) converge to an eps-neighborhood of an equilibrium at time of order O(log(1/eps)).Comment: 11 pages, 8 figures. Revised manuscript structure and added more material and figures for the case of stochastically fluctuating channels. This version will appear in the IEEE Journal on Selected Areas in Communication, Special Issue on Game Theory in Wireless Communication
    • …
    corecore