13,459 research outputs found

    Neural Network Models for Implicit Discourse Relation Classification in English and Chinese without Surface Features

    Full text link
    Inferring implicit discourse relations in natural language text is the most difficult subtask in discourse parsing. Surface features achieve good performance, but they are not readily applicable to other languages without semantic lexicons. Previous neural models require parses, surface features, or a small label set to work well. Here, we propose neural network models that are based on feedforward and long-short term memory architecture without any surface features. To our surprise, our best configured feedforward architecture outperforms LSTM-based model in most cases despite thorough tuning. Under various fine-grained label sets and a cross-linguistic setting, our feedforward models perform consistently better or at least just as well as systems that require hand-crafted surface features. Our models present the first neural Chinese discourse parser in the style of Chinese Discourse Treebank, showing that our results hold cross-linguistically

    Learning Universal Sentence Representations with Mean-Max Attention Autoencoder

    Full text link
    In order to learn universal sentence representations, previous methods focus on complex recurrent neural networks or supervised learning. In this paper, we propose a mean-max attention autoencoder (mean-max AAE) within the encoder-decoder framework. Our autoencoder rely entirely on the MultiHead self-attention mechanism to reconstruct the input sequence. In the encoding we propose a mean-max strategy that applies both mean and max pooling operations over the hidden vectors to capture diverse information of the input. To enable the information to steer the reconstruction process dynamically, the decoder performs attention over the mean-max representation. By training our model on a large collection of unlabelled data, we obtain high-quality representations of sentences. Experimental results on a broad range of 10 transfer tasks demonstrate that our model outperforms the state-of-the-art unsupervised single methods, including the classical skip-thoughts and the advanced skip-thoughts+LN model. Furthermore, compared with the traditional recurrent neural network, our mean-max AAE greatly reduce the training time.Comment: EMNLP 201

    Why and when should you pool? Analyzing Pooling in Recurrent Architectures

    Full text link
    Pooling-based recurrent neural architectures consistently outperform their counterparts without pooling. However, the reasons for their enhanced performance are largely unexamined. In this work, we examine three commonly used pooling techniques (mean-pooling, max-pooling, and attention), and propose max-attention, a novel variant that effectively captures interactions among predictive tokens in a sentence. We find that pooling-based architectures substantially differ from their non-pooling equivalents in their learning ability and positional biases--which elucidate their performance benefits. By analyzing the gradient propagation, we discover that pooling facilitates better gradient flow compared to BiLSTMs. Further, we expose how BiLSTMs are positionally biased towards tokens in the beginning and the end of a sequence. Pooling alleviates such biases. Consequently, we identify settings where pooling offers large benefits: (i) in low resource scenarios, and (ii) when important words lie towards the middle of the sentence. Among the pooling techniques studied, max-attention is the most effective, resulting in significant performance gains on several text classification tasks.Comment: Preprin

    Deep Learning applied to NLP

    Full text link
    Convolutional Neural Network (CNNs) are typically associated with Computer Vision. CNNs are responsible for major breakthroughs in Image Classification and are the core of most Computer Vision systems today. More recently CNNs have been applied to problems in Natural Language Processing and gotten some interesting results. In this paper, we will try to explain the basics of CNNs, its different variations and how they have been applied to NLP

    Semi-supervised Question Retrieval with Gated Convolutions

    Full text link
    Question answering forums are rapidly growing in size with no effective automated ability to refer to and reuse answers already available for previous posted questions. In this paper, we develop a methodology for finding semantically related questions. The task is difficult since 1) key pieces of information are often buried in extraneous details in the question body and 2) available annotations on similar questions are scarce and fragmented. We design a recurrent and convolutional model (gated convolution) to effectively map questions to their semantic representations. The models are pre-trained within an encoder-decoder framework (from body to title) on the basis of the entire raw corpus, and fine-tuned discriminatively from limited annotations. Our evaluation demonstrates that our model yields substantial gains over a standard IR baseline and various neural network architectures (including CNNs, LSTMs and GRUs).Comment: NAACL 201

    Multi-Cast Attention Networks for Retrieval-based Question Answering and Response Prediction

    Full text link
    Attention is typically used to select informative sub-phrases that are used for prediction. This paper investigates the novel use of attention as a form of feature augmentation, i.e, casted attention. We propose Multi-Cast Attention Networks (MCAN), a new attention mechanism and general model architecture for a potpourri of ranking tasks in the conversational modeling and question answering domains. Our approach performs a series of soft attention operations, each time casting a scalar feature upon the inner word embeddings. The key idea is to provide a real-valued hint (feature) to a subsequent encoder layer and is targeted at improving the representation learning process. There are several advantages to this design, e.g., it allows an arbitrary number of attention mechanisms to be casted, allowing for multiple attention types (e.g., co-attention, intra-attention) and attention variants (e.g., alignment-pooling, max-pooling, mean-pooling) to be executed simultaneously. This not only eliminates the costly need to tune the nature of the co-attention layer, but also provides greater extents of explainability to practitioners. Via extensive experiments on four well-known benchmark datasets, we show that MCAN achieves state-of-the-art performance. On the Ubuntu Dialogue Corpus, MCAN outperforms existing state-of-the-art models by 9%9\%. MCAN also achieves the best performing score to date on the well-studied TrecQA dataset.Comment: Accepted to KDD 2018 (Paper titled only "Multi-Cast Attention Networks" in KDD version

    RAP-Net: Recurrent Attention Pooling Networks for Dialogue Response Selection

    Full text link
    The response selection has been an emerging research topic due to the growing interest in dialogue modeling, where the goal of the task is to select an appropriate response for continuing dialogues. To further push the end-to-end dialogue model toward real-world scenarios, the seventh Dialog System Technology Challenge (DSTC7) proposed a challenging track based on real chatlog datasets. The competition focuses on dialogue modeling with several advanced characteristics: (1) natural language diversity, (2) capability of precisely selecting a proper response from a large set of candidates or the scenario without any correct answer, and (3) knowledge grounding. This paper introduces recurrent attention pooling networks (RAP-Net), a novel framework for response selection, which can well estimate the relevance between the dialogue contexts and the candidates. The proposed RAP-Net is shown to be effective and can be generalized across different datasets and settings in the DSTC7 experiments

    Question-Aware Sentence Gating Networks for Question and Answering

    Full text link
    Machine comprehension question answering, which finds an answer to the question given a passage, involves high-level reasoning processes of understanding and tracking the relevant contents across various semantic units such as words, phrases, and sentences in a document. This paper proposes the novel question-aware sentence gating networks that directly incorporate the sentence-level information into word-level encoding processes. To this end, our model first learns question-aware sentence representations and then dynamically combines them with word-level representations, resulting in semantically meaningful word representations for QA tasks. Experimental results demonstrate that our approach consistently improves the accuracy over existing baseline approaches on various QA datasets and bears the wide applicability to other neural network-based QA models

    Reasoning with Sarcasm by Reading In-between

    Full text link
    Sarcasm is a sophisticated speech act which commonly manifests on social communities such as Twitter and Reddit. The prevalence of sarcasm on the social web is highly disruptive to opinion mining systems due to not only its tendency of polarity flipping but also usage of figurative language. Sarcasm commonly manifests with a contrastive theme either between positive-negative sentiments or between literal-figurative scenarios. In this paper, we revisit the notion of modeling contrast in order to reason with sarcasm. More specifically, we propose an attention-based neural model that looks in-between instead of across, enabling it to explicitly model contrast and incongruity. We conduct extensive experiments on six benchmark datasets from Twitter, Reddit and the Internet Argument Corpus. Our proposed model not only achieves state-of-the-art performance on all datasets but also enjoys improved interpretability.Comment: Accepted to ACL201

    Extraction of Salient Sentences from Labelled Documents

    Full text link
    We present a hierarchical convolutional document model with an architecture designed to support introspection of the document structure. Using this model, we show how to use visualisation techniques from the computer vision literature to identify and extract topic-relevant sentences. We also introduce a new scalable evaluation technique for automatic sentence extraction systems that avoids the need for time consuming human annotation of validation data.Comment: arXiv admin note: substantial text overlap with arXiv:1406.383
    • …
    corecore