1,503 research outputs found

    Robust H-infinity finite-horizon control for a class of stochastic nonlinear time-varying systems subject to sensor and actuator saturations

    Get PDF
    Copyright [2010] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.This technical note addresses the robust H∞ finite-horizon output feedback control problem for a class of uncertain discrete stochastic nonlinear time-varying systems with both sensor and actuator saturations. In the system under investigation, all the system parameters are allowed to be time-varying, the parameter uncertainties are assumed to be of the polytopic type, and the stochastic nonlinearities are described by statistical means which can cover several classes of well-studied nonlinearities. The purpose of the problem addressed is to design an output feedback controller, over a given finite-horizon, such that the H∞ disturbance attenuation level is guaranteed for the nonlinear stochastic polytopic system in the presence of saturated sensor and actuator outputs. Sufficient conditions are first established for the robust H∞ performance through intensive stochastic analysis, and then a recursive linear matrix inequality (RLMI) approach is employed to design the desired output feedback controller achieving the prescribed H∞ disturbance rejection level. Simulation results demonstrate the effectiveness of the developed controller design scheme.This work was supported under Australian Research Council’s Discovery Projects funding scheme (project DP0880494) and by the German Science Foundation (DFG) within the priority programme 1305: Control Theory of Digitally Networked Dynamical Systems. Recommended by Associate Editor H. Ito

    Probability-dependent gain-scheduled filtering for stochastic systems with missing measurements

    Get PDF
    Copyright @ 2011 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.This brief addresses the gain-scheduled filtering problem for a class of discrete-time systems with missing measurements, nonlinear disturbances, and external stochastic noise. The missing-measurement phenomenon is assumed to occur in a random way, and the missing probability is time-varying with securable upper and lower bounds that can be measured in real time. The multiplicative noise is a state-dependent scalar Gaussian white-noise sequence with known variance. The addressed gain-scheduled filtering problem is concerned with the design of a filter such that, for the admissible random missing measurements, nonlinear parameters, and external noise disturbances, the error dynamics is exponentially mean-square stable. The desired filter is equipped with time-varying gains based primarily on the time-varying missing probability and is therefore less conservative than the traditional filter with fixed gains. It is shown that the filter parameters can be derived in terms of the measurable probability via the semidefinite program method.This work was supported in part by the Leverhulme Trust of the U.K., the Engineering and Physical Sciences Research Council (EPSRC) of the U.K. under Grant GR/S27658/01, the National Natural Science Foundation of China under Grants 61028008, 61074016 and 60974030, the Shanghai Natural Science Foundation of China under Grant 10ZR1421200, and the Alexander von Humboldt Foundation of Germany

    Algorithm Engineering in Robust Optimization

    Full text link
    Robust optimization is a young and emerging field of research having received a considerable increase of interest over the last decade. In this paper, we argue that the the algorithm engineering methodology fits very well to the field of robust optimization and yields a rewarding new perspective on both the current state of research and open research directions. To this end we go through the algorithm engineering cycle of design and analysis of concepts, development and implementation of algorithms, and theoretical and experimental evaluation. We show that many ideas of algorithm engineering have already been applied in publications on robust optimization. Most work on robust optimization is devoted to analysis of the concepts and the development of algorithms, some papers deal with the evaluation of a particular concept in case studies, and work on comparison of concepts just starts. What is still a drawback in many papers on robustness is the missing link to include the results of the experiments again in the design

    Discontinuous Galerkin Methods for the Biharmonic Problem on Polygonal and Polyhedral Meshes

    Get PDF
    We introduce an hphp-version symmetric interior penalty discontinuous Galerkin finite element method (DGFEM) for the numerical approximation of the biharmonic equation on general computational meshes consisting of polygonal/polyhedral (polytopic) elements. In particular, the stability and hphp-version a-priori error bound are derived based on the specific choice of the interior penalty parameters which allows for edges/faces degeneration. Furthermore, by deriving a new inverse inequality for a special class {of} polynomial functions (harmonic polynomials), the proposed DGFEM is proven to be stable to incorporate very general polygonal/polyhedral elements with an \emph{arbitrary} number of faces for polynomial basis with degree p=2,3p=2,3. The key feature of the proposed method is that it employs elemental polynomial bases of total degree Pp\mathcal{P}_p, defined in the physical coordinate system, without requiring the mapping from a given reference or canonical frame. A series of numerical experiments are presented to demonstrate the performance of the proposed DGFEM on general polygonal/polyhedral meshes

    Relative Robust Portfolio Optimization

    Get PDF
    Considering mean-variance portfolio problems with uncertain model parameters, we contrast the classical absolute robust optimization approach with the relative robust approach based on a maximum regret function. Although the latter problems are NP-hard in general, we show that tractable inner and outer approximations exist in several cases that are of central interest in asset management

    Robust H-infinity filtering for 2-D systems with intermittent measurements

    Get PDF
    This paper is concerned with the problem of robust H∞ filtering for uncertain two-dimensional (2-D) systems with intermittent measurements. The parameter uncertainty is assumed to be of polytopic type, and the measurements transmission is assumed to be imperfect, which is modeled by a stochastic variable satisfying the Bernoulli random binary distribution. Our attention is focused on the design of an H∞ filter such that the filtering error system is stochastically stable and preserves a guaranteed H∞ performance. This problem is solved in the parameter-dependent framework, which is much less conservative than the quadratic approach. By introducing some slack matrix variables, the coupling between the positive definite matrices and the system matrices is eliminated, which greatly facilitates the filter design procedure. The corresponding results are established in terms of linear matrix inequalities, which can be easily tested by using standard numerical software. An example is provided to show the effectiveness of the proposed approac
    corecore