20 research outputs found

    Tension ribbons: Quantifying and visualising tonal tension

    Get PDF
    Tension is a complex multidimensional concept that is not easily quantified. This research proposes three methods for quantifying aspects of tonal tension based on the spiral array, a model for tonality. The cloud diameter measures the dispersion of clusters of notes in tonal space; the cloud momentum measures the movement of pitch sets in the spiral array; finally, tensile strain measures the distance between the local and global tonal context. The three methods are implemented in a system that displays the results as tension ribbons over the music score to allow for ease of interpretation. All three methods are extensively tested on data ranging from small snippets to phrases with the Tristan chord and larger sections from Beethoven and Schubert piano sonatas. They are further compared to results from an existing empirical experiment

    Audio Properties of Perceived Boundaries in Music

    Get PDF

    Automatic transcription of traditional Turkish art music recordings: A computational ethnomusicology appraoach

    Get PDF
    Thesis (Doctoral)--Izmir Institute of Technology, Electronics and Communication Engineering, Izmir, 2012Includes bibliographical references (leaves: 96-109)Text in English; Abstract: Turkish and Englishxi, 131 leavesMusic Information Retrieval (MIR) is a recent research field, as an outcome of the revolutionary change in the distribution of, and access to the music recordings. Although MIR research already covers a wide range of applications, MIR methods are primarily developed for western music. Since the most important dimensions of music are fundamentally different in western and non-western musics, developing MIR methods for non-western musics is a challenging task. On the other hand, the discipline of ethnomusicology supplies some useful insights for the computational studies on nonwestern musics. Therefore, this thesis overcomes this challenging task within the framework of computational ethnomusicology, a new emerging interdisciplinary research domain. As a result, the main contribution of this study is the development of an automatic transcription system for traditional Turkish art music (Turkish music) for the first time in the literature. In order to develop such system for Turkish music, several subjects are also studied for the first time in the literature which constitute other contributions of the thesis: Automatic music transcription problem is considered from the perspective of ethnomusicology, an automatic makam recognition system is developed and the scale theory of Turkish music is evaluated computationally for nine makamlar in order to understand whether it can be used for makam detection. Furthermore, there is a wide geographical region such as Middle-East, North Africa and Asia sharing similarities with Turkish music. Therefore our study would also provide more relevant techniques and methods than the MIR literature for the study of these non-western musics

    Instantaneous Harmonic Analysis and its Applications in Automatic Music Transcription

    Get PDF
    This thesis presents a novel short-time frequency analysis algorithm, namely Instantaneous Harmonic Analysis (IHA), using a decomposition scheme based on sinusoidals. An estimate for instantaneous amplitude and phase elements of the constituent components of real-valued signals with respect to a set of reference frequencies is provided. In the context of musical audio analysis, the instantaneous amplitude is interpreted as presence of the pitch in time. The thesis examines the potential of improving the automated music analysis process by utilizing the proposed algorithm. For that reason, it targets the following two areas: Multiple Fundamental Frequency Estimation (MFFE), and note on-set/off-set detection. The IHA algorithm uses constant-Q filtering by employing Windowed Sinc Filters (WSFs) and a novel phasor construct. An implementation of WSFs in the continuous model is used. A new relation between the Constant-Q Transform (CQT) and WSFs is presented. It is demonstrated that CQT can alternatively be implemented by applying a series of logarithmically scaled WSFs while its window function is adjusted, accordingly. The relation between the window functions is provided as well. A comparison of the proposed IHA algorithm with WSFs and CQT demonstrates that the IHA phasor construct delivers better estimates for instantaneous amplitude and phase lags of the signal components. The thesis also extends the IHA algorithm by employing a generalized kernel function, which in nature, yields a non-orthonormal basis. The kernel function represents the timbral information and is used in the MFFE process. An effective algorithm is proposed to overcome the non-orthonormality issue of the decomposition scheme. To examine the performance improvement of the note on-set/off-set detection process, the proposed algorithm is used in the context of Automatic Music Transcription (AMT). A prototype of an audioto-MIDI system is developed and applied on synthetic and real music signals. The results of the experiments on real and synthetic music signals are reported. Additionally, a multi-dimensional generalization of the IHA algorithm is presented. The IHA phasor construct is extended into the hyper-complex space, in order to deliver the instantaneous amplitude and multiple phase elements for each dimension
    corecore