21 research outputs found

    Self-Healing Tile Sets

    Get PDF
    Biology provides the synthetic chemist with a tantalizing and frustrating challenge: to create complex objects, defined from the molecular scale up to meters, that construct themselves from elementary components, and perhaps even reproduce themselves. This is the challenge of bottom-up fabrication. The most compelling answer to this challenge was formulated in the early 1980s by Ned Seeman, who realized that the information carried by DNA strands provides a means to program molecular self-assembly, with potential applications including DNA scaffolds for crystallography [19] or for molecular electronic circuits [15]. This insight opened the doors to engineering with the rich set of phenomena available in nucleic acid chemistry [20]

    The Two-Handed Tile Assembly Model Is Not Intrinsically Universal

    Get PDF
    In this paper, we study the intrinsic universality of the well-studied Two-Handed Tile Assembly Model (2HAM), in which two “supertile” assemblies, each consisting of one or more unit-square tiles, can fuse together (self-assemble) whenever their total attachment strength is at least the global temperature τ. Our main result is that for all τ′ < τ, each temperature-τ′ 2HAM tile system cannot simulate at least one temperature-τ 2HAM tile system. This impossibility result proves that the 2HAM is not intrinsically universal, in stark contrast to the simpler abstract Tile Assembly Model which was shown to be intrinsically universal (The tile assembly model is intrinsically universal, FOCS 2012). On the positive side, we prove that, for every fixed temperature τ ≥ 2, temperature-τ 2HAM tile systems are intrinsically universal: for each τ there is a single universal 2HAM tile set U that, when appropriately initialized, is capable of simulating the behavior of any temperature τ 2HAM tile system. As a corollary of these results we find an infinite set of infinite hierarchies of 2HAM systems with strictly increasing power within each hierarchy. Finally, we show how to construct, for each τ, a temperature-τ 2HAM system that simultaneously simulates all temperature-τ 2HAM systems

    Pattern overlap implies runaway growth in hierarchical tile systems

    Get PDF
    We show that in the hierarchical tile assembly model, if there is a producible assembly that overlaps a nontrivial translation of itself consistently (i.e., the pattern of tile types in the overlap region is identical in both translations), then arbitrarily large assemblies are producible. The significance of this result is that tile systems intended to controllably produce finite structures must avoid pattern repetition in their producible assemblies that would lead to such overlap. This answers an open question of Chen and Doty (SODA 2012), who showed that so-called "partial-order" systems producing a unique finite assembly *and" avoiding such overlaps must require time linear in the assembly diameter. An application of our main result is that any system producing a unique finite assembly is automatically guaranteed to avoid such overlaps, simplifying the hypothesis of Chen and Doty's main theorem

    The Two-Handed Tile Assembly Model is not Intrinsically Universal

    Get PDF
    The Two-Handed Tile Assembly Model (2HAM) is a model of algorithmic self-assembly in which large structures, or assemblies of tiles, are grown by the binding of smaller assemblies. In order to bind, two assemblies must have matching glues that can simultaneously touch each other, and stick together with strength that is at least the temperature τ, where τ is some fixed positive integer. We ask whether the 2HAM is intrinsically universal. In other words, we ask: is there a single 2HAM tile set U which can be used to simulate any instance of the model? Our main result is a negative answer to this question. We show that for all τ′ < τ, each temperature-τ′ 2HAM tile system does not simulate at least one temperature-τ 2HAM tile system. This impossibility result proves that the 2HAM is not intrinsically universal and stands in contrast to the fact that the (single-tile addition) abstract Tile Assembly Model is intrinsically universal. On the positive side, we prove that, for every fixed temperature τ ≥ 2, temperature-τ 2HAM tile systems are indeed intrinsically universal. In other words, for each τ there is a single intrinsically universal 2HAM tile set U_τ that, when appropriately initialized, is capable of simulating the behavior of any temperature-τ 2HAM tile system. As a corollary, we find an infinite set of infinite hierarchies of 2HAM systems with strictly increasing simulation power within each hierarchy. Finally, we show that for each τ, there is a temperature-τ 2HAM system that simultaneously simulates all temperature-τ 2HAM systems

    Producibility in hierarchical self-assembly

    Get PDF
    Three results are shown on producibility in the hierarchical model of tile self-assembly. It is shown that a simple greedy polynomial-time strategy decides whether an assembly α is producible. The algorithm can be optimized to use O(|α|log^2 |α|) time. Cannon et al. (STACS 2013: proceedings of the thirtieth international symposium on theoretical aspects of computer science. pp 172–184, 2013) showed that the problem of deciding if an assembly α is the unique producible terminal assembly of a tile system T can be solved in O(|α|^2 |T|+|α||T|^2) time for the special case of noncooperative “temperature 1” systems. It is shown that this can be improved to O(|α||T|log|T|) time. Finally, it is shown that if two assemblies are producible, and if they can be overlapped consistently—i.e., if the positions that they share have the same tile type in each assembly—then their union is also producible

    Self-Assembly of Arbitrary Shapes Using RNAse Enzymes: Meeting the Kolmogorov Bound with Small Scale Factor (extended abstract)

    Get PDF
    We consider a model of algorithmic self-assembly of geometric shapes out of square Wang tiles studied in SODA 2010, in which there are two types of tiles (e.g., constructed out of DNA and RNA material) and one operation that destroys all tiles of a particular type (e.g., an RNAse enzyme destroys all RNA tiles). We show that a single use of this destruction operation enables much more efficient construction of arbitrary shapes. In particular, an arbitrary shape can be constructed using an asymptotically optimal number of distinct tile types (related to the shape's Kolmogorov complexity), after scaling the shape by only a logarithmic factor. By contrast, without the destruction operation, the best such result has a scale factor at least linear in the size of the shape, and is connected only by a spanning tree of the scaled tiles. We also characterize a large collection of shapes that can be constructed efficiently without any scaling
    corecore