21 research outputs found

    Quantum algorithms for highly non-linear Boolean functions

    Full text link
    Attempts to separate the power of classical and quantum models of computation have a long history. The ultimate goal is to find exponential separations for computational problems. However, such separations do not come a dime a dozen: while there were some early successes in the form of hidden subgroup problems for abelian groups--which generalize Shor's factoring algorithm perhaps most faithfully--only for a handful of non-abelian groups efficient quantum algorithms were found. Recently, problems have gotten increased attention that seek to identify hidden sub-structures of other combinatorial and algebraic objects besides groups. In this paper we provide new examples for exponential separations by considering hidden shift problems that are defined for several classes of highly non-linear Boolean functions. These so-called bent functions arise in cryptography, where their property of having perfectly flat Fourier spectra on the Boolean hypercube gives them resilience against certain types of attack. We present new quantum algorithms that solve the hidden shift problems for several well-known classes of bent functions in polynomial time and with a constant number of queries, while the classical query complexity is shown to be exponential. Our approach uses a technique that exploits the duality between bent functions and their Fourier transforms.Comment: 15 pages, 1 figure, to appear in Proceedings of the 21st Annual ACM-SIAM Symposium on Discrete Algorithms (SODA'10). This updated version of the paper contains a new exponential separation between classical and quantum query complexit

    Maiorana-McFarland class: Degree optimization and algebraic properties

    Get PDF

    Minimal pp-ary codes from non-covering permutations

    Get PDF
    In this article, we propose several generic methods for constructing minimal linear codes over the field Fp\mathbb{F}_p. The first construction uses the method of direct sum of an arbitrary function f:Fpr→Fpf:\mathbb{F}_{p^r}\to \mathbb{F}_{p} and a bent function g:Fps→Fpg:\mathbb{F}_{p^s}\to \mathbb{F}_p to induce minimal codes with parameters [pr+s−1,r+s+1][p^{r+s}-1,r+s+1] and minimum distance larger than pr(p−1)(ps−1−ps/2−1)p^r(p-1)(p^{s-1}-p^{s/2-1}). For the first time, we provide a general construction of linear codes from a subclass of non-weakly regular plateaued functions, which partially answers an open problem posed in [22]. The second construction deals with a bent function g:Fpm→Fpg:\mathbb{F}_{p^m}\to \mathbb{F}_p and a subspace of suitable derivatives UU of gg, i.e., functions of the form g(y+a)−g(y)g(y+a)-g(y) for some a∈Fpm∗a\in \mathbb{F}_{p^m}^*. We also provide a sound generalization of the recently introduced concept of non-covering permutations [45]. Some important structural properties of this class of permutations are derived in this context. The most remarkable observation is that the class of non-covering permutations contains the class of APN power permutations (characterized by having two-to-one derivatives). Finally, the last general construction combines the previous two methods (direct sum, non-covering permutations and subspaces of derivatives) together with a bent function in the Maiorana-McFarland class to construct minimal codes (even those violating the Ashikhmin-Barg bound) with a larger dimension. This last method proves to be quite flexible since it can lead to several non-equivalent codes, depending to a great extent on the choice of the underlying non-covering permutation
    corecore