7,075 research outputs found

    Activity recognition from videos with parallel hypergraph matching on GPUs

    Full text link
    In this paper, we propose a method for activity recognition from videos based on sparse local features and hypergraph matching. We benefit from special properties of the temporal domain in the data to derive a sequential and fast graph matching algorithm for GPUs. Traditionally, graphs and hypergraphs are frequently used to recognize complex and often non-rigid patterns in computer vision, either through graph matching or point-set matching with graphs. Most formulations resort to the minimization of a difficult discrete energy function mixing geometric or structural terms with data attached terms involving appearance features. Traditional methods solve this minimization problem approximately, for instance with spectral techniques. In this work, instead of solving the problem approximatively, the exact solution for the optimal assignment is calculated in parallel on GPUs. The graphical structure is simplified and regularized, which allows to derive an efficient recursive minimization algorithm. The algorithm distributes subproblems over the calculation units of a GPU, which solves them in parallel, allowing the system to run faster than real-time on medium-end GPUs

    Dagstuhl Reports : Volume 1, Issue 2, February 2011

    Get PDF
    Online Privacy: Towards Informational Self-Determination on the Internet (Dagstuhl Perspectives Workshop 11061) : Simone Fischer-Hübner, Chris Hoofnagle, Kai Rannenberg, Michael Waidner, Ioannis Krontiris and Michael Marhöfer Self-Repairing Programs (Dagstuhl Seminar 11062) : Mauro Pezzé, Martin C. Rinard, Westley Weimer and Andreas Zeller Theory and Applications of Graph Searching Problems (Dagstuhl Seminar 11071) : Fedor V. Fomin, Pierre Fraigniaud, Stephan Kreutzer and Dimitrios M. Thilikos Combinatorial and Algorithmic Aspects of Sequence Processing (Dagstuhl Seminar 11081) : Maxime Crochemore, Lila Kari, Mehryar Mohri and Dirk Nowotka Packing and Scheduling Algorithms for Information and Communication Services (Dagstuhl Seminar 11091) Klaus Jansen, Claire Mathieu, Hadas Shachnai and Neal E. Youn

    Minmax regret combinatorial optimization problems: an Algorithmic Perspective

    Get PDF
    Candia-Vejar, A (reprint author), Univ Talca, Modeling & Ind Management Dept, Curico, Chile.Uncertainty in optimization is not a new ingredient. Diverse models considering uncertainty have been developed over the last 40 years. In our paper we essentially discuss a particular uncertainty model associated with combinatorial optimization problems, developed in the 90's and broadly studied in the past years. This approach named minmax regret (in particular our emphasis is on the robust deviation criteria) is different from the classical approach for handling uncertainty, stochastic approach, where uncertainty is modeled by assumed probability distributions over the space of all possible scenarios and the objective is to find a solution with good probabilistic performance. In the minmax regret (MMR) approach, the set of all possible scenarios is described deterministically, and the search is for a solution that performs reasonably well for all scenarios, i.e., that has the best worst-case performance. In this paper we discuss the computational complexity of some classic combinatorial optimization problems using MMR. approach, analyze the design of several algorithms for these problems, suggest the study of some specific research problems in this attractive area, and also discuss some applications using this model

    Matching

    Get PDF
    • …
    corecore