52 research outputs found

    Polynomial-time Isomorphism Test for Groups with Abelian Sylow Towers

    Get PDF
    We consider the problem of testing isomorphism of groups of order n given by Cayley tables. The trivial n^{log n} bound on the time complexity for the general case has not been improved over the past four decades. Recently, Babai et al. (following Babai et al. in SODA 2011) presented a polynomial-time algorithm for groups without abelian normal subgroups, which suggests solvable groups as the hard case for group isomorphism problem. Extending recent work by Le Gall (STACS 2009) and Qiao et al. (STACS 2011), in this paper we design a polynomial-time algorithm to test isomorphism for the largest class of solvable groups yet, namely groups with abelian Sylow towers, defined as follows. A group G is said to possess a Sylow tower, if there exists a normal series where each quotient is isomorphic to Sylow subgroup of G. A group has an abelian Sylow tower if it has a Sylow tower and all its Sylow subgroups are abelian. In fact, we are able to compute the coset of isomorphisms of groups formed as coprime extensions of an abelian group, by a group whose automorphism group is known. The mathematical tools required include representation theory, Wedderburn\u27s theorem on semisimple algebras, and M.E. Harris\u27s 1980 work on p\u27-automorphisms of abelian p-groups. We use tools from the theory of permutation group algorithms, and develop an algorithm for a parameterized versin of the graph-isomorphism-hard setwise stabilizer problem, which may be of independent interest

    Algorithms for group isomorphism via group extensions and cohomology

    Full text link
    The isomorphism problem for finite groups of order n (GpI) has long been known to be solvable in nlogn+O(1)n^{\log n+O(1)} time, but only recently were polynomial-time algorithms designed for several interesting group classes. Inspired by recent progress, we revisit the strategy for GpI via the extension theory of groups. The extension theory describes how a normal subgroup N is related to G/N via G, and this naturally leads to a divide-and-conquer strategy that splits GpI into two subproblems: one regarding group actions on other groups, and one regarding group cohomology. When the normal subgroup N is abelian, this strategy is well-known. Our first contribution is to extend this strategy to handle the case when N is not necessarily abelian. This allows us to provide a unified explanation of all recent polynomial-time algorithms for special group classes. Guided by this strategy, to make further progress on GpI, we consider central-radical groups, proposed in Babai et al. (SODA 2011): the class of groups such that G mod its center has no abelian normal subgroups. This class is a natural extension of the group class considered by Babai et al. (ICALP 2012), namely those groups with no abelian normal subgroups. Following the above strategy, we solve GpI in nO(loglogn)n^{O(\log \log n)} time for central-radical groups, and in polynomial time for several prominent subclasses of central-radical groups. We also solve GpI in nO(loglogn)n^{O(\log\log n)} time for groups whose solvable normal subgroups are elementary abelian but not necessarily central. As far as we are aware, this is the first time there have been worst-case guarantees on a no(logn)n^{o(\log n)}-time algorithm that tackles both aspects of GpI---actions and cohomology---simultaneously.Comment: 54 pages + 14-page appendix. Significantly improved presentation, with some new result

    Beating the Generator-Enumeration Bound for pp-Group Isomorphism

    Full text link
    We consider the group isomorphism problem: given two finite groups G and H specified by their multiplication tables, decide if G cong H. For several decades, the n^(log_p n + O(1)) generator-enumeration bound (where p is the smallest prime dividing the order of the group) has been the best worst-case result for general groups. In this work, we show the first improvement over the generator-enumeration bound for p-groups, which are believed to be the hard case of the group isomorphism problem. We start by giving a Turing reduction from group isomorphism to n^((1 / 2) log_p n + O(1)) instances of p-group composition-series isomorphism. By showing a Karp reduction from p-group composition-series isomorphism to testing isomorphism of graphs of degree at most p + O(1) and applying algorithms for testing isomorphism of graphs of bounded degree, we obtain an n^(O(p)) time algorithm for p-group composition-series isomorphism. Combining these two results yields an algorithm for p-group isomorphism that takes at most n^((1 / 2) log_p n + O(p)) time. This algorithm is faster than generator-enumeration when p is small and slower when p is large. Choosing the faster algorithm based on p and n yields an upper bound of n^((1 / 2 + o(1)) log n) for p-group isomorphism.Comment: 15 pages. This is an updated and improved version of the results for p-groups in arXiv:1205.0642 and TR11-052 in ECC

    Polynomial-Time Isomorphism Test of Groups that are Tame Extensions

    Full text link
    We give new polynomial-time algorithms for testing isomorphism of a class of groups given by multiplication tables (GpI). Two results (Cannon & Holt, J. Symb. Comput. 2003; Babai, Codenotti & Qiao, ICALP 2012) imply that GpI reduces to the following: given groups G, H with characteristic subgroups of the same type and isomorphic to Zpd\mathbb{Z}_p^d, and given the coset of isomorphisms Iso(G/Zpd,H/Zpd)Iso(G/\mathbb{Z}_p^d, H/\mathbb{Z}_p^d), compute Iso(G, H) in time poly(|G|). Babai & Qiao (STACS 2012) solved this problem when a Sylow p-subgroup of G/ZpdG/\mathbb{Z}_p^d is trivial. In this paper, we solve the preceding problem in the so-called "tame" case, i.e., when a Sylow p-subgroup of G/ZpdG/\mathbb{Z}_p^d is cyclic, dihedral, semi-dihedral, or generalized quaternion. These cases correspond exactly to the group algebra Fp[G/Zpd]\overline{\mathbb{F}}_p[G/\mathbb{Z}_p^d] being of tame type, as in the celebrated tame-wild dichotomy in representation theory. We then solve new cases of GpI in polynomial time. Our result relies crucially on the divide-and-conquer strategy proposed earlier by the authors (CCC 2014), which splits GpI into two problems, one on group actions (representations), and one on group cohomology. Based on this strategy, we combine permutation group and representation algorithms with new mathematical results, including bounds on the number of indecomposable representations of groups in the tame case, and on the size of their cohomology groups. Finally, we note that when a group extension is not tame, the preceding bounds do not hold. This suggests a precise sense in which the tame-wild dichotomy from representation theory may also be a dividing line between the (currently) easy and hard instances of GpI.Comment: 23 page

    Parallel algorithms for solvable permutation groups

    Get PDF
    AbstractA number of basic problems involving solvable and nilpotent permutation groups are shown to have fast parallel solutions. Testing solvability is in NC as well as, for solvable groups, finding order, testing membership, finding centralizers, finding centers, finding the derived series and finding a composition series. Additionally, for nilpotent groups, one can, in NC, find a central composition series, and find pointwise stabilizers of sets. The latter is applied to an instance of graph isomorphism. A useful tool is the observation that the problem of finding the smallest subspace containing a given set of vectors and closed under a given set of linear transformations (all over a small field) belongs to NC

    Linear Space Data Structures for Finite Groups with Constant Query-Time

    Get PDF
    corecore