9 research outputs found

    Sum-Rate Maximization in Two-Way AF MIMO Relaying: Polynomial Time Solutions to a Class of DC Programming Problems

    Full text link
    Sum-rate maximization in two-way amplify-and-forward (AF) multiple-input multiple-output (MIMO) relaying belongs to the class of difference-of-convex functions (DC) programming problems. DC programming problems occur as well in other signal processing applications and are typically solved using different modifications of the branch-and-bound method. This method, however, does not have any polynomial time complexity guarantees. In this paper, we show that a class of DC programming problems, to which the sum-rate maximization in two-way MIMO relaying belongs, can be solved very efficiently in polynomial time, and develop two algorithms. The objective function of the problem is represented as a product of quadratic ratios and parameterized so that its convex part (versus the concave part) contains only one (or two) optimization variables. One of the algorithms is called POlynomial-Time DC (POTDC) and is based on semi-definite programming (SDP) relaxation, linearization, and an iterative search over a single parameter. The other algorithm is called RAte-maximization via Generalized EigenvectorS (RAGES) and is based on the generalized eigenvectors method and an iterative search over two (or one, in its approximate version) optimization variables. We also derive an upper-bound for the optimal values of the corresponding optimization problem and show by simulations that this upper-bound can be achieved by both algorithms. The proposed methods for maximizing the sum-rate in the two-way AF MIMO relaying system are shown to be superior to other state-of-the-art algorithms.Comment: 35 pages, 10 figures, Submitted to the IEEE Trans. Signal Processing in Nov. 201

    Robust Adaptive Beamforming for General-Rank Signal Model with Positive Semi-Definite Constraint via POTDC

    Full text link
    The robust adaptive beamforming (RAB) problem for general-rank signal model with an additional positive semi-definite constraint is considered. Using the principle of the worst-case performance optimization, such RAB problem leads to a difference-of-convex functions (DC) optimization problem. The existing approaches for solving the resulted non-convex DC problem are based on approximations and find only suboptimal solutions. Here we solve the non-convex DC problem rigorously and give arguments suggesting that the solution is globally optimal. Particularly, we rewrite the problem as the minimization of a one-dimensional optimal value function whose corresponding optimization problem is non-convex. Then, the optimal value function is replaced with another equivalent one, for which the corresponding optimization problem is convex. The new one-dimensional optimal value function is minimized iteratively via polynomial time DC (POTDC) algorithm.We show that our solution satisfies the Karush-Kuhn-Tucker (KKT) optimality conditions and there is a strong evidence that such solution is also globally optimal. Towards this conclusion, we conjecture that the new optimal value function is a convex function. The new RAB method shows superior performance compared to the other state-of-the-art general-rank RAB methods.Comment: 29 pages, 7 figures, 2 tables, Submitted to IEEE Trans. Signal Processing on August 201

    Advanced Signal Processing Techniques for Two-Way Relaying Networks and Full-Duplex Communication Systems

    Get PDF
    ï»żSehr hohe Datenraten und stĂ€ndig verfĂŒgbare Netzabdeckung in zukĂŒnftigen drahtlosen Netzwerken erfordern neue Algorithmen auf der physischen Schicht. Die Nutzung von Relais stellt ein vielversprechendes Verfahren dar, da die Netzabdeckung gesteigert werden kann. ZusĂ€tzlich steht hierdurch im Vergleich zu Kupfer- oder Glasfaserleitungen eine preiswerte Lösung zur Anbindung an die Netzinfrastruktur zur VerfĂŒgung. Traditionelle Einwege-Relais-Techniken (One-Way Relaying [OWR]) nutzen Halbduplex-Verfahren (HD-Verfahren), welche das Übertragungssystem ausbremst und zu spektralen Verlusten fĂŒhrt. Einerseits erlauben es Zweiwege-Relais-Techniken (Two-Way Relaying [TWR]), simultan sowohl an das Relais zu senden als auch von diesem zu empfangen, wodurch im Vergleich zu OWR das Spektrum effizienter genutzt wird. Aus diesem Grunde untersuchen wir Zweiwege-Relais und im Speziellen TWR-Systeme fĂŒr den Mehrpaar-/Mehrnutzer-Betrieb unter Nutzung von Amplify-and-forward-Relais (AF-Relais). Derartige Szenarien leiden unter Interferenzen zwischen Paaren bzw. zwischen Nutzern. Um diesen Interferenzen Herr zu werden, werden hochentwickelte Signalverarbeitungsalgorithmen – oder in anderen Worten rĂ€umliche Mehrfachzugriffsverfahren (Spatial Division Multiple Access [SDMA]) – benötigt. Andererseits kann der spektrale Verlust durch den HD-Betrieb auch kompensiert werden, wenn das Relais im Vollduplexbetrieb arbeitet. Nichtsdestotrotz ist ein FD-GerĂ€t in der Praxis aufgrund starker interner Selbstinterferenz (SI) und begrenztem Dynamikumfang des Tranceivers schwer zu realisieren. Aus diesem Grunde sollten fortschrittliche Verfahren zur SI-ÜnterdrĂŒckung entwickelt werden. Diese Dissertation trĂ€gt diesen beiden Zielen Rechnung, indem optimale und/oder effiziente algebraische Lösungen entwickelt werden, welche verschiedenen Nutzenfunktionen, wie Summenrate und minimale Sendeleistung, maximieren.Im ersten Teil studieren wir zunĂ€chst Mehrpaar-TWR-Netzwerke mit einem einzelnen Mehrantennen-AF-Relais. Dieser Anwendungsfall kann auch so betrachtet werden, dass sich mehrere verschiedene Dienstoperatoren Relais und Spektrum teilen, wobei verschiedene Nutzerpaare zu verschiedenen Dienstoperatoren gehören. Aktuelle AnsĂ€tzen zielen auf InterferenzunterdrĂŒckung ab. Wir schlagen ein auf Projektion basiertes Verfahren zur Trennung mehrerer Dienstoperatoren (projection based separation of multiple operators [ProBaSeMO]) vor. ProBaSeMO ist leicht anpassbar fĂŒr den Fall, dass jeder Nutzer mehrere Antennen besitzt oder unterschiedliche Systemdesignkriterien angewendet werden mĂŒssen. Als Bewertungsmaßstab fĂŒr ProBaSeMO entwickeln wir optimale Algorithmen zur Maximierung der Summenrate, zur Minimierung der Sendeleistung am Relais oder zur Maximierung des minimalen Signal-zu-Interferenz-und-Rausch-VerhĂ€ltnisses (Signal to Interference and Noise Ratio [SINR]) am Nutzer. Zur Maximierung der Summenrate wurden spezifische gradientenbasierte Methoden entwickelt, die unabhĂ€ngig davon sind, ob ein Nutzer mit einer oder mehr Antennen ausgestattet ist. Um im Falle eines „Worst-Case“ immer noch eine polynomielle Laufzeit zu garantieren, entwickelten wir einen Algorithmus mit polynomieller Laufzeit. Dieser ist inspiriert von der „Polynomial Time Difference of Convex Functions“-Methode (POTDC-Methode). BezĂŒglich der Summenrate des Systems untersuchen wir zuletzt, welche Bedingungen erfĂŒllt sein mĂŒssen, um einen Gewinn durch gemeinsames Nutzen zu erhalten. Hiernach untersuchen wir die Maximierung der Summenrate eines Mehrpaar-TWR-Netzwerkes mit mehreren Einantennen-AF-Relais und Einantennen-Nutzern. Das daraus resultierende Problem der Summenraten-Maximierung, gebunden an eine bestimmte Gesamtsendeleistung aller Relais im Netzwerk, ist Ă€hnlich dem des vorangegangenen Szenarios. Dementsprechend kann eine optimale Lösung fĂŒr das eine Szenario auch fĂŒr das jeweils andere Szenario genutzt werden. Weiterhin werden basierend auf dem Polynomialzeitalgorithmus global optimale Lösungen entwickelt. Diese Lösungen sind entweder an eine maximale Gesamtsendeleistung aller Relais oder an eine maximale Sendeleistung jedes einzelnen Relais gebunden. ZusĂ€tzlich entwickeln wir suboptimale Lösungen, die effizient in ihrer Laufzeit sind und eine Approximation der optimalen Lösung darstellen. Hiernach verlegen wir unser Augenmerk auf ein Mehrpaar-TWR-Netzwerk mit mehreren Mehrantennen-AF-Relais und mehreren Repeatern. Solch ein Szenario ist allgemeiner, da die vorherigen beiden Szenarien als spezielle Realisierungen dieses Szenarios aufgefasst werden können. Das Interferenz-Management in diesem Szenario ist herausfordernder aufgrund der vorhandenen Repeater. Interferenzneutralisierung (IN) stellt eine Lösung dar, um diese Art Interferenz zu handhaben. Im Zuge dessen werden notwendige und ausreichende Bedingungen zur Aufhebung der Interferenz hergeleitet. Weiterhin wird ein Framework entwickelt, dass verschiedene Systemnutzenfunktionen optimiert, wobei IN im jeweiligen Netzwerk vorhanden sein kann oder auch nicht. Dies ist unabhĂ€ngig davon, ob die Relais einer maximalen Gesamtsendeleistung oder einer individuellen maximalen Sendeleistung unterliegen. Letztendlich entwickeln wir ein Übertragungsverfahren sowie ein Vorkodier- und Dekodierverfahren fĂŒr Basisstationen (BS) in einem TWR-assistierten Mehrbenutzer-MIMO-Downlink-Kanal. Im Vergleich mit dem Mehrpaar-TWR-Netzwerk leidet dieses Szenario unter Interferenzen zwischen den KanĂ€len. Wir entwickeln drei suboptimale Algorithmen, welche auf Kanalinversion basieren. ProBaSeMO und „Zero-Forcing Dirty Paper Coding“ (ZFDPC), welche eine geringe ZeitkomplexitĂ€t aufweisen, schaffen eine Balance zwischen LeistungsfĂ€higkeit und KomplexitĂ€t. ZusĂ€tzlich gibt es jeweils nur geringe EinbrĂŒche in stark beanspruchten Kommunikationssystemen.Im zweiten Teil untersuchen wir Techniken zur SI-UnterdrĂŒckung, um den FD-Gewinn in einem Punkt-zu-Punkt-System auszunutzen. ZunĂ€chst entwickeln wir ein Übertragungsverfahren, dass auf SI RĂŒcksicht nimmt und die SI-UnterdrĂŒckung gegen den Multiplexgewinn abwĂ€gt. Die besten Ergebnisse werden durch die perfekte Kenntnis des Kanals erzielt, was praktisch nicht genau der Fall ist. Aus diesem Grund werden Übertragungstechniken fĂŒr den „Worst Case“ entwickelt, die den KanalschĂ€tzfehlern Rechnung tragen. Diese Fehler werden deterministisch modelliert und durch Ellipsoide beschrĂ€nkt. In praktischen Szenarien ist der HF-Schaltkreise nicht perfekt. Dies hat Einfluss auf die Verfahren zur SI-UnterdrĂŒckung und fĂŒhrt zu einer Restselbstinterferenz. Wir entwickeln effiziente Übertragungstechniken mittels Beamforming, welche auf dem Signal-zu-Verlust-und-Rausch-VerhĂ€ltnis (signal to leakage plus noise ratio [SLNR]) aufbauen, um Unvollkommenheiten der HF-Schaltkreise auszugleichen. ZusĂ€tzlich können alle Designkonzepte auf FD-OWR-Systeme erweitert werden.To enable ultra-high data rate and ubiquitous coverage in future wireless networks, new physical layer techniques are desired. Relaying is a promising technique for future wireless networks since it can boost the coverage and can provide low cost wireless backhauling solutions, as compared to traditional wired backhauling solutions via fiber and copper. Traditional one-way relaying (OWR) techniques suffer from the spectral loss due to the half-duplex (HD) operation at the relay. On one hand, two-way relaying (TWR) allows the communication partners to transmit to and/or receive from the relay simultaneously and thus uses the spectrum more efficiently than OWR. Therefore, we study two-way relays and more specifically multi-pair/multi-user TWR systems with amplify-and-forward (AF) relays. These scenarios suffer from inter-pair or inter-user interference. To deal with the interference, advanced signal processing algorithms, in other words, spatial division multiple access (SDMA) techniques, are desired. On the other hand, if the relay is a full-duplex (FD) relay, the spectral loss due to a HD operation can also be compensated. However, in practice, a FD device is hard to realize due to the strong loop-back self-interference and the limited dynamic range at the transceiver. Thus, advanced self-interference suppression techniques should be developed. This thesis contributes to the two goals by developing optimal and/or efficient algebraic solutions for different scenarios subject to different utility functions of the system, e.g., sum rate maximization and transmit power minimization. In the first part of this thesis, we first study a multi-pair TWR network with a multi-antenna AF relay. This scenario can be also treated as the sharing of the relay and the spectrum among multiple operators assuming that different pairs of users belong to different operators. Existing approaches focus on interference suppression. We propose a projection based separation of multiple operators (ProBaSeMO) scheme, which can be easily extended when each user has multiple antennas or when different system design criteria are applied. To benchmark the ProBaSeMO scheme, we develop optimal relay transmit strategies to maximize the system sum rate, minimize the required transmit power at the relay, or maximize the minimum signal to interference plus noise ratio (SINR) of the users. Specifically for the sum rate maximization problem, gradient based methods are developed regardless whether each user has a single antenna or multiple antennas. To guarantee a worst-case polynomial time solution, we also develop a polynomial time algorithm which has been inspired by the polynomial time difference of convex functions (POTDC) method. Finally, we analyze the conditions for obtaining the sharing gain in terms of the sum rate. Then we study the sum rate maximization problem of a multi-pair TWR network with multiple single antenna AF relays and single antenna users. The resulting sum rate maximization problem, subject to a total transmit power constraint of the relays in the network, yields a similar problem structure as in the previous scenario. Therefore the optimal solution for one scenario can be used for the other. Moreover, a global optimal solution, which is based on the polyblock approach, and several suboptimal solutions, which are more computationally efficient and approximate the optimal solution, are developed when there is a total transmit power constraint of the relays in the network or each relay has its own transmit power constraint. We then shift our focus to a multi-pair TWR network with multiple multi-antenna AF relays and multiple dumb repeaters. This scenario is more general because the previous two scenarios can be seen as special realizations of this scenario. The interference management in this scenario is more challenging due to the existence of the repeaters. Interference neutralization (IN) is a solution for dealing with this kind of interference. Thereby, necessary and sufficient conditions for neutralizing the interference are derived. Moreover, a general framework to optimize different system utility functions in this network with or without IN is developed regardless whether the AF relays in the network have a total transmit power limit or individual transmit power limits. Finally, we develop the relay transmit strategy as well as base station (BS) precoding and decoding schemes for a TWR assisted multi-user MIMO (MU-MIMO) downlink channel. Compared to the multi-pair TWR network, this scenario suffers from the co-channel interference. We develop three suboptimal algorithms which are based on channel inversion, ProBaSeMO and zero-forcing dirty paper coding (ZFDPC), which has a low computational complexity, provides a balance between the performance and the complexity, and suffers only a little when the system is heavily loaded, respectively.In the second part of this thesis, we investigate self-interference (SI) suppression techniques to exploit the FD gain for a point-to-point MIMO system. We first develop SI aware transmit strategies, which provide a balance between the SI suppression and the multiplexing gain of the system. To get the best performance, perfect channel state information (CSI) is needed, which is imperfect in practice. Thus, worst case transmit strategies to combat the imperfect CSI are developed, where the CSI errors are modeled deterministically and bounded by ellipsoids. In real word applications, the RF chain is imperfect. This affects the performance of the SI suppression techniques and thus results in residual SI. We develop efficient transmit beamforming techniques, which are based on the signal to leakage plus noise ratio (SLNR) criterion, to deal with the imperfections in the RF chain. All the proposed design concepts can be extended to FD OWR systems

    On the Optimal Precoding for MIMO Gaussian Wire-Tap Channels

    Full text link
    We consider the problem of finding secrecy rate of a multiple-input multiple-output (MIMO) wire-tap channel. A transmitter, a legitimate receiver, and an eavesdropper are all equipped with multiple antennas. The channel states from the transmitter to the legitimate user and to the eavesdropper are assumed to be known at the transmitter. In this contribution, we address the problem of finding the optimal precoder/transmit covariance matrix maximizing the secrecy rate of the given wiretap channel. The problem formulation is shown to be equivalent to a difference of convex functions programming problem and an efficient algorithm for addressing this problem is developed.Comment: Published in Proceedings of the Tenth International Symposium on Wireless Communication Systems (ISWCS 2013), Ilmenau, Germany, August 201

    Advanced Algebraic Concepts for Efficient Multi-Channel Signal Processing

    Get PDF
    ï»żUnsere moderne Gesellschaft ist Zeuge eines fundamentalen Wandels in der Art und Weise wie wir mit Technologie interagieren. GerĂ€te werden zunehmend intelligenter - sie verfĂŒgen ĂŒber mehr und mehr Rechenleistung und hĂ€ufiger ĂŒber eigene Kommunikationsschnittstellen. Das beginnt bei einfachen HaushaltsgerĂ€ten und reicht ĂŒber Transportmittel bis zu großen ĂŒberregionalen Systemen wie etwa dem Stromnetz. Die Erfassung, die Verarbeitung und der Austausch digitaler Informationen gewinnt daher immer mehr an Bedeutung. Die Tatsache, dass ein wachsender Anteil der GerĂ€te heutzutage mobil und deshalb batteriebetrieben ist, begrĂŒndet den Anspruch, digitale Signalverarbeitungsalgorithmen besonders effizient zu gestalten. Dies kommt auch dem Wunsch nach einer Echtzeitverarbeitung der großen anfallenden Datenmengen zugute. Die vorliegende Arbeit demonstriert Methoden zum Finden effizienter algebraischer Lösungen fĂŒr eine Vielzahl von Anwendungen mehrkanaliger digitaler Signalverarbeitung. Solche AnsĂ€tze liefern nicht immer unbedingt die bestmögliche Lösung, kommen dieser jedoch hĂ€ufig recht nahe und sind gleichzeitig bedeutend einfacher zu beschreiben und umzusetzen. Die einfache Beschreibungsform ermöglicht eine tiefgehende Analyse ihrer LeistungsfĂ€higkeit, was fĂŒr den Entwurf eines robusten und zuverlĂ€ssigen Systems unabdingbar ist. Die Tatsache, dass sie nur gebrĂ€uchliche algebraische Hilfsmittel benötigen, erlaubt ihre direkte und zĂŒgige Umsetzung und den Test unter realen Bedingungen. Diese Grundidee wird anhand von drei verschiedenen Anwendungsgebieten demonstriert. ZunĂ€chst wird ein semi-algebraisches Framework zur Berechnung der kanonisch polyadischen (CP) Zerlegung mehrdimensionaler Signale vorgestellt. Dabei handelt es sich um ein sehr grundlegendes Werkzeug der multilinearen Algebra mit einem breiten Anwendungsspektrum von Mobilkommunikation ĂŒber Chemie bis zur Bildverarbeitung. Verglichen mit existierenden iterativen Lösungsverfahren bietet das neue Framework die Möglichkeit, den Rechenaufwand und damit die GĂŒte der erzielten Lösung zu steuern. Es ist außerdem weniger anfĂ€llig gegen eine schlechte Konditionierung der Ausgangsdaten. Das zweite Gebiet, das in der Arbeit besprochen wird, ist die unterraumbasierte hochauflösende ParameterschĂ€tzung fĂŒr mehrdimensionale Signale, mit Anwendungsgebieten im RADAR, der Modellierung von Wellenausbreitung, oder bildgebenden Verfahren in der Medizin. Es wird gezeigt, dass sich derartige mehrdimensionale Signale mit Tensoren darstellen lassen. Dies erlaubt eine natĂŒrlichere Beschreibung und eine bessere Ausnutzung ihrer Struktur als das mit Matrizen möglich ist. Basierend auf dieser Idee entwickeln wir eine tensor-basierte SchĂ€tzung des Signalraums, welche genutzt werden kann um beliebige existierende Matrix-basierte Verfahren zu verbessern. Dies wird im Anschluss exemplarisch am Beispiel der ESPRIT-artigen Verfahren gezeigt, fĂŒr die verbesserte Versionen vorgeschlagen werden, die die mehrdimensionale Struktur der Daten (Tensor-ESPRIT), nichzirkulĂ€re Quellsymbole (NC ESPRIT), sowie beides gleichzeitig (NC Tensor-ESPRIT) ausnutzen. Um die endgĂŒltige SchĂ€tzgenauigkeit objektiv einschĂ€tzen zu können wird dann ein Framework fĂŒr die analytische Beschreibung der LeistungsfĂ€higkeit beliebiger ESPRIT-artiger Algorithmen diskutiert. Verglichen mit existierenden analytischen AusdrĂŒcken ist unser Ansatz allgemeiner, da keine Annahmen ĂŒber die statistische Verteilung von Nutzsignal und Rauschen benötigt werden und die Anzahl der zur VerfĂŒgung stehenden SchnappschĂŒsse beliebig klein sein kann. Dies fĂŒhrt auf vereinfachte AusdrĂŒcke fĂŒr den mittleren quadratischen SchĂ€tzfehler, die Schlussfolgerungen ĂŒber die Effizienz der Verfahren unter verschiedenen Bedingungen zulassen. Das dritte Anwendungsgebiet ist der bidirektionale Datenaustausch mit Hilfe von Relay-Stationen. Insbesondere liegt hier der Fokus auf Zwei-Wege-Relaying mit Hilfe von Amplify-and-Forward-Relays mit mehreren Antennen, da dieser Ansatz ein besonders gutes Kosten-Nutzen-VerhĂ€ltnis verspricht. Es wird gezeigt, dass sich die nötige Kanalkenntnis mit einem einfachen algebraischen Tensor-basierten SchĂ€tzverfahren gewinnen lĂ€sst. Außerdem werden Verfahren zum Finden einer gĂŒnstigen Relay-VerstĂ€rkungs-Strategie diskutiert. Bestehende AnsĂ€tze basieren entweder auf komplexen numerischen Optimierungsverfahren oder auf Ad-Hoc-AnsĂ€tzen die keine zufriedenstellende Bitfehlerrate oder Summenrate liefern. Deshalb schlagen wir algebraische AnsĂ€tze zum Finden der RelayverstĂ€rkungsmatrix vor, die von relevanten Systemmetriken inspiriert sind und doch einfach zu berechnen sind. Wir zeigen das algebraische ANOMAX-Verfahren zum Erreichen einer niedrigen Bitfehlerrate und seine Modifikation RR-ANOMAX zum Erreichen einer hohen Summenrate. FĂŒr den Spezialfall, in dem die EndgerĂ€te nur eine Antenne verwenden, leiten wir eine semi-algebraische Lösung zum Finden der Summenraten-optimalen Strategie (RAGES) her. Anhand von numerischen Simulationen wird die LeistungsfĂ€higkeit dieser Verfahren bezĂŒglich Bitfehlerrate und erreichbarer Datenrate bewertet und ihre EffektivitĂ€t gezeigt.Modern society is undergoing a fundamental change in the way we interact with technology. More and more devices are becoming "smart" by gaining advanced computation capabilities and communication interfaces, from household appliances over transportation systems to large-scale networks like the power grid. Recording, processing, and exchanging digital information is thus becoming increasingly important. As a growing share of devices is nowadays mobile and hence battery-powered, a particular interest in efficient digital signal processing techniques emerges. This thesis contributes to this goal by demonstrating methods for finding efficient algebraic solutions to various applications of multi-channel digital signal processing. These may not always result in the best possible system performance. However, they often come close while being significantly simpler to describe and to implement. The simpler description facilitates a thorough analysis of their performance which is crucial to design robust and reliable systems. The fact that they rely on standard algebraic methods only allows their rapid implementation and test under real-world conditions. We demonstrate this concept in three different application areas. First, we present a semi-algebraic framework to compute the Canonical Polyadic (CP) decompositions of multidimensional signals, a very fundamental tool in multilinear algebra with applications ranging from chemistry over communications to image compression. Compared to state-of-the art iterative solutions, our framework offers a flexible control of the complexity-accuracy trade-off and is less sensitive to badly conditioned data. The second application area is multidimensional subspace-based high-resolution parameter estimation with applications in RADAR, wave propagation modeling, or biomedical imaging. We demonstrate that multidimensional signals can be represented by tensors, providing a convenient description and allowing to exploit the multidimensional structure in a better way than using matrices only. Based on this idea, we introduce the tensor-based subspace estimate which can be applied to enhance existing matrix-based parameter estimation schemes significantly. We demonstrate the enhancements by choosing the family of ESPRIT-type algorithms as an example and introducing enhanced versions that exploit the multidimensional structure (Tensor-ESPRIT), non-circular source amplitudes (NC ESPRIT), and both jointly (NC Tensor-ESPRIT). To objectively judge the resulting estimation accuracy, we derive a framework for the analytical performance assessment of arbitrary ESPRIT-type algorithms by virtue of an asymptotical first order perturbation expansion. Our results are more general than existing analytical results since we do not need any assumptions about the distribution of the desired signal and the noise and we do not require the number of samples to be large. At the end, we obtain simplified expressions for the mean square estimation error that provide insights into efficiency of the methods under various conditions. The third application area is bidirectional relay-assisted communications. Due to its particularly low complexity and its efficient use of the radio resources we choose two-way relaying with a MIMO amplify and forward relay. We demonstrate that the required channel knowledge can be obtained by a simple algebraic tensor-based channel estimation scheme. We also discuss the design of the relay amplification matrix in such a setting. Existing approaches are either based on complicated numerical optimization procedures or on ad-hoc solutions that to not perform well in terms of the bit error rate or the sum-rate. Therefore, we propose algebraic solutions that are inspired by these performance metrics and therefore perform well while being easy to compute. For the MIMO case, we introduce the algebraic norm maximizing (ANOMAX) scheme, which achieves a very low bit error rate, and its extension Rank-Restored ANOMAX (RR-ANOMAX) that achieves a sum-rate close to an upper bound. Moreover, for the special case of single antenna terminals we derive the semi-algebraic RAGES scheme which finds the sum-rate optimal relay amplification matrix based on generalized eigenvectors. Numerical simulations evaluate the resulting system performance in terms of bit error rate and system sum rate which demonstrates the effectiveness of the proposed algebraic solutions

    Rank-Two Beamforming and Power Allocation in Multicasting Relay Networks

    Full text link
    In this paper, we propose a novel single-group multicasting relay beamforming scheme. We assume a source that transmits common messages via multiple amplify-and-forward relays to multiple destinations. To increase the number of degrees of freedom in the beamforming design, the relays process two received signals jointly and transmit the Alamouti space-time block code over two different beams. Furthermore, in contrast to the existing relay multicasting scheme of the literature, we take into account the direct links from the source to the destinations. We aim to maximize the lowest received quality-of-service by choosing the proper relay weights and the ideal distribution of the power resources in the network. To solve the corresponding optimization problem, we propose an iterative algorithm which solves sequences of convex approximations of the original non-convex optimization problem. Simulation results demonstrate significant performance improvements of the proposed methods as compared with the existing relay multicasting scheme of the literature and an algorithm based on the popular semidefinite relaxation technique

    Principles of minimum variance robust adaptive beamforming design

    Get PDF
    Robustness is typically understood as an ability of adaptive beamforming algorithm to achieve high performance in the situations with imperfect, incomplete, or erroneous knowledge about the source, propagation media, and antenna array. It is also desired to achieve high performance with as little as possible prior information. In the last decade, several fruitful principles to minimum variance distortionless response (MVDR) robust adaptive beamforming (RAB) design have been developed and successfully applied to solve a number of problems in a wide range of applications. Such principles of MVDR RAB design are summarized here in a single paper. Prof. Gershman has actively participated in the development and applications of a number of such MVDR RAB design principles
    corecore