125 research outputs found

    Updating belief in arguments in epistemic graphs

    Get PDF
    Epistemic graphs are a recent generalization of epistemic probabilistic argumentation. Relations between arguments can be supporting, attacking, as well as neither supporting nor attacking. These interdependencies are represented by epistemic constraints, and the semantics of epistemic graphs are given in terms of probability distributions satisfying these constraints. We investigate the behaviour of epistemic graphs in a dynamic setting where a given distribution can be updated once new constraints are presented. Our focus is on update methods that minimize the change in probabilistic beliefs. We show that all methods satisfy basic commonsense postulates, identify fragments of the epistemic constraint language that guarantee the existence of well-defined solutions, and explain how the problems that arise in more expressive fragments can be treated either automatically or by user support. We demonstrate the usefulness of our proposal by considering its application in computational persuasion

    Updating belief in arguments in epistemic graphs

    Get PDF
    Epistemic graphs are a recent generalization of epistemic probabilistic argumentation. Relations between arguments can be supporting, attacking, as well as neither supporting nor attacking. These interdependencies are represented by epistemic constraints, and the semantics of epistemic graphs are given in terms of probability distributions satisfying these constraints. We investigate the behaviour of epistemic graphs in a dynamic setting where a given distribution can be updated once new constraints are presented. Our focus is on update methods that minimize the change in probabilistic beliefs. We show that all methods satisfy basic commonsense postulates, identify fragments of the epistemic constraint language that guarantee the existence of well-defined solutions, and explain how the problems that arise in more expressive fragments can be treated either automatically or by user support. We demonstrate the usefulness of our proposal by considering its application in computational persuasion

    Strategic Argumentation Dialogues for Persuasion: Framework and Experiments Based on Modelling the Beliefs and Concerns of the Persuadee

    Get PDF
    Persuasion is an important and yet complex aspect of human intelligence. When undertaken through dialogue, the deployment of good arguments, and therefore counterarguments, clearly has a significant effect on the ability to be successful in persuasion. Two key dimensions for determining whether an argument is good in a particular dialogue are the degree to which the intended audience believes the argument and counterarguments, and the impact that the argument has on the concerns of the intended audience. In this paper, we present a framework for modelling persuadees in terms of their beliefs and concerns, and for harnessing these models in optimizing the choice of move in persuasion dialogues. Our approach is based on the Monte Carlo Tree Search which allows optimization in real-time. We provide empirical results of a study with human participants showing that our automated persuasion system based on this technology is superior to a baseline system that does not take the beliefs and concerns into account in its strategy.Comment: The Data Appendix containing the arguments, argument graphs, assignment of concerns to arguments, preferences over concerns, and assignment of beliefs to arguments, is available at the link http://www0.cs.ucl.ac.uk/staff/a.hunter/papers/unistudydata.zip The code is available at https://github.com/ComputationalPersuasion/MCC

    Strategic argumentation dialogues for persuasion: Framework and experiments based on modelling the beliefs and concerns of the persuadee

    Get PDF
    Persuasion is an important and yet complex aspect of human intelligence. When undertaken through dialogue, the deployment of good arguments, and therefore counterarguments, clearly has a significant effect on the ability to be successful in persuasion. Two key dimensions for determining whether an argument is 'good' in a particular dialogue are the degree to which the intended audience believes the argument and counterarguments, and the impact that the argument has on the concerns of the intended audience. In this paper, we present a framework for modelling persuadees in terms of their beliefs and concerns, and for harnessing these models in optimizing the choice of move in persuasion dialogues. Our approach is based on the Monte Carlo Tree Search which allows optimization in real-time. We provide empirical results of a study with human participants that compares an automated persuasion system based on this technology with a baseline system that does not take the beliefs and concerns into account in its strategy

    Detecting bots with temporal logic

    Get PDF
    Social bots are computer programs that act like human users on social media platforms. Social bot detection is a rapidly growing field dominated by machine learning approaches. In this paper, we propose a complementary method to machine learning by exploring bot detection as a model checking problem. We introduce Temporal Network Logic (TNL) which we use to specify social networks where agents can post and follow each other. Using this logic, we formalize different types of social bot behavior with formulas that are satisfied in a model of a network with bots. We also consider an extension of the logic where we explore the expressive power of including elements from hybrid logic in our framework. We give model checking algorithms for TNL and its hybrid extension, and show that the complexity of the former is in P and the latter in PSPACE.publishedVersio
    • …
    corecore