519 research outputs found

    Factoring bivariate lacunary polynomials without heights

    Full text link
    We present an algorithm which computes the multilinear factors of bivariate lacunary polynomials. It is based on a new Gap Theorem which allows to test whether a polynomial of the form P(X,X+1) is identically zero in time polynomial in the number of terms of P(X,Y). The algorithm we obtain is more elementary than the one by Kaltofen and Koiran (ISSAC'05) since it relies on the valuation of polynomials of the previous form instead of the height of the coefficients. As a result, it can be used to find some linear factors of bivariate lacunary polynomials over a field of large finite characteristic in probabilistic polynomial time.Comment: 25 pages, 1 appendi

    Computing low-degree factors of lacunary polynomials: a Newton-Puiseux approach

    Full text link
    We present a new algorithm for the computation of the irreducible factors of degree at most dd, with multiplicity, of multivariate lacunary polynomials over fields of characteristic zero. The algorithm reduces this computation to the computation of irreducible factors of degree at most dd of univariate lacunary polynomials and to the factorization of low-degree multivariate polynomials. The reduction runs in time polynomial in the size of the input polynomial and in dd. As a result, we obtain a new polynomial-time algorithm for the computation of low-degree factors, with multiplicity, of multivariate lacunary polynomials over number fields, but our method also gives partial results for other fields, such as the fields of pp-adic numbers or for absolute or approximate factorization for instance. The core of our reduction uses the Newton polygon of the input polynomial, and its validity is based on the Newton-Puiseux expansion of roots of bivariate polynomials. In particular, we bound the valuation of f(X,Ï•)f(X,\phi) where ff is a lacunary polynomial and Ï•\phi a Puiseux series whose vanishing polynomial has low degree.Comment: 22 page

    Reconstructing Rational Functions with FireFly\texttt{FireFly}

    Full text link
    We present the open-source C++\texttt{C++} library FireFly\texttt{FireFly} for the reconstruction of multivariate rational functions over finite fields. We discuss the involved algorithms and their implementation. As an application, we use FireFly\texttt{FireFly} in the context of integration-by-parts reductions and compare runtime and memory consumption to a fully algebraic approach with the program Kira\texttt{Kira}.Comment: 46 pages, 3 figures, 6 tables; v2: matches published versio

    Factoring bivariate sparse (lacunary) polynomials

    Get PDF
    We present a deterministic algorithm for computing all irreducible factors of degree ≤d\le d of a given bivariate polynomial f∈K[x,y]f\in K[x,y] over an algebraic number field KK and their multiplicities, whose running time is polynomial in the bit length of the sparse encoding of the input and in dd. Moreover, we show that the factors over \Qbarra of degree ≤d\le d which are not binomials can also be computed in time polynomial in the sparse length of the input and in dd.Comment: 20 pp, Latex 2e. We learned on January 23th, 2006, that a multivariate version of Theorem 1 had independently been achieved by Erich Kaltofen and Pascal Koira

    Note on Integer Factoring Methods IV

    Get PDF
    This note continues the theoretical development of deterministic integer factorization algorithms based on systems of polynomials equations. The main result establishes a new deterministic time complexity bench mark in integer factorization.Comment: 20 Pages, New Versio

    Computation of Darboux polynomials and rational first integrals with bounded degree in polynomial time

    Get PDF
    International audienceIn this paper we study planar polynomial differential systems of this form: dX/dt=A(X, Y ), dY/dt= B(X, Y ), where A,B belongs to Z[X, Y ], degA ≤ d, degB ≤ d, and the height of A and B is smaller than H. A lot of properties of planar polynomial differential systems are related to irreducible Darboux polynomials of the corresponding derivation: D =A(X, Y )dX + B(X, Y )dY . Darboux polynomials are usually computed with the method of undetermined coefficients. With this method we have to solve a polynomial system. We show that this approach can give rise to the computation of an exponential number of reducible Darboux polynomials. Here we show that the Lagutinskii-Pereira's algorithm computes irreducible Darboux polynomials with degree smaller than N, with a polynomial number, relatively to d, log(H) and N, binary operations. We also give a polynomial-time method to compute, if it exists, a rational first integral with bounded degree
    • …
    corecore