618 research outputs found

    Connectivity, Coverage and Placement in Wireless Sensor Networks

    Get PDF
    Wireless communication between sensors allows the formation of flexible sensor networks, which can be deployed rapidly over wide or inaccessible areas. However, the need to gather data from all sensors in the network imposes constraints on the distances between sensors. This survey describes the state of the art in techniques for determining the minimum density and optimal locations of relay nodes and ordinary sensors to ensure connectivity, subject to various degrees of uncertainty in the locations of the nodes

    Unified Power Management in Wireless Sensor Networks, Doctoral Dissertation, August 2006

    Get PDF
    Radio power management is of paramount concern in wireless sensor networks (WSNs) that must achieve long lifetimes on scarce amount of energy. Previous work has treated communication and sensing separately, which is insufficient for a common class of sensor networks that must satisfy both sensing and communication requirements. Furthermore, previous approaches focused on reducing energy consumption in individual radio states resulting in suboptimal solutions. Finally, existing power management protocols often assume simplistic models that cannot accurately reflect the sensing and communication properties of real-world WSNs. We develop a unified power management approach to address these issues. We first analyze the relationship between sensing and communication performance of WSNs. We show that sensing coverage often leads to good network connectivity and geographic routing performance, which provides insights into unified power management under both sensing and communication performance requirements. We then develop a novel approach called Minimum Power Configuration that ingegrates the power consumption in different radio states into a unified optimization framework. Finally, we develop two power management protocols that account for realistic communication and sensing properties of WSNs. Configurable Topology Control can configure a network topology to achieve desired path quality in presence of asymmetric and lossy links. Co-Grid is a coverage maintenance protocol that adopts a probabilistic sensing model. Co-Grid can satisfy desirable sensing QoS requirements (i.e., detection probability and false alarm rate) based on a distributed data fusion model

    Modeling the Energy Performance of Event-Driven Wireless Sensor Network by Using Static Sink and Mobile Sink

    Get PDF
    Wireless Sensor Networks (WSNs) designed for mission-critical applications suffer from limited sensing capacities, particularly fast energy depletion. Regarding this, mobile sinks can be used to balance the energy consumption in WSNs, but the frequent location updates of the mobile sinks can lead to data collisions and rapid energy consumption for some specific sensors. This paper explores an optimal barrier coverage based sensor deployment for event driven WSNs where a dual-sink model was designed to evaluate the energy performance of not only static sensors, but Static Sink (SS) and Mobile Sinks (MSs) simultaneously, based on parameters such as sensor transmission range r and the velocity of the mobile sink v, etc. Moreover, a MS mobility model was developed to enable SS and MSs to effectively collaborate, while achieving spatiotemporal energy performance efficiency by using the knowledge of the cumulative density function (cdf), Poisson process and M/G/1 queue. The simulation results verified that the improved energy performance of the whole network was demonstrated clearly and our eDSA algorithm is more efficient than the static-sink model, reducing energy consumption approximately in half. Moreover, we demonstrate that our results are robust to realistic sensing models and also validate the correctness of our results through extensive simulations

    Reliable Message Dissemination in Mobile Vehicular Networks

    Full text link
    Les rĂ©seaux vĂ©hiculaires accueillent une multitude d’applications d’info-divertissement et de sĂ©curitĂ©. Les applications de sĂ©curitĂ© visent Ă  amĂ©liorer la sĂ©curitĂ© sur les routes (Ă©viter les accidents), tandis que les applications d’info-divertissement visent Ă  amĂ©liorer l'expĂ©rience des passagers. Les applications de sĂ©curitĂ© ont des exigences rigides en termes de dĂ©lais et de fiabilitĂ© ; en effet, la diffusion des messages d’urgence (envoyĂ©s par un vĂ©hicule/Ă©metteur) devrait ĂȘtre fiable et rapide. Notons que, pour diffuser des informations sur une zone de taille plus grande que celle couverte par la portĂ©e de transmission d’un Ă©metteur, il est nĂ©cessaire d’utiliser un mĂ©canisme de transmission multi-sauts. De nombreuses approches ont Ă©tĂ© proposĂ©es pour assurer la fiabilitĂ© et le dĂ©lai des dites applications. Toutefois, ces mĂ©thodes prĂ©sentent plusieurs lacunes. Cette thĂšse, nous proposons trois contributions. La premiĂšre contribution aborde la question de la diffusion fiable des messages d’urgence. A cet Ă©gard, un nouveau schĂ©ma, appelĂ© REMD, a Ă©tĂ© proposĂ©. Ce schĂ©ma utilise la rĂ©pĂ©tition de message pour offrir une fiabilitĂ© garantie, Ă  chaque saut, tout en assurant un court dĂ©lai. REMD calcule un nombre optimal de rĂ©pĂ©titions en se basant sur l’estimation de la qualitĂ© de rĂ©ception de lien dans plusieurs locations (appelĂ©es cellules) Ă  l’intĂ©rieur de la zone couverte par la portĂ©e de transmission de l’émetteur. REMD suppose que les qualitĂ©s de rĂ©ception de lien des cellules adjacentes sont indĂ©pendantes. Il sĂ©lectionne, Ă©galement, un nombre de vĂ©hicules, appelĂ©s relais, qui coopĂšrent dans le contexte de la rĂ©pĂ©tition du message d’urgence pour assurer la fiabilitĂ© en multi-sauts. La deuxiĂšme contribution, appelĂ©e BCRB, vise Ă  amĂ©liorer REMD ; elle suppose que les qualitĂ©s de rĂ©ception de lien des cellules adjacentes sont dĂ©pendantes ce qui est, gĂ©nĂ©ralement, plus rĂ©aliste. BCRB utilise les rĂ©seaux BayĂ©siens pour modĂ©liser les dĂ©pendances en vue d’estimer la qualitĂ© du lien de rĂ©ception avec une meilleure prĂ©cision. La troisiĂšme contribution, appelĂ©e RICS, offre un accĂšs fiable Ă  Internet. RICS propose un modĂšle d’optimisation, avec une rĂ©solution exacte optimale Ă  l'aide d’une technique de rĂ©duction de la dimension spatiale, pour le dĂ©ploiement des passerelles. Chaque passerelle utilise BCRB pour Ă©tablir une communication fiable avec les vĂ©hicules.Vehicular networks aim to enable a plethora of safety and infotainment applications. Safety applications aim to preserve people's lives (e.g., by helping in avoiding crashes) while infotainment applications focus on enhancing the passengers’ experience. These applications, especially safety applications, have stringent requirements in terms of reliability and delay; indeed, dissemination of an emergency message (e.g., by a vehicle/sender involved in a crash) should be reliable while satisfying short delay requirements. Note, that multi-hop dissemination is needed to reach all vehicles, in the target area, that may be outside the transmission range of the sender. Several schemes have been proposed to provide reliability and short delay for vehicular applications. However, these schemes have several limitations. Thus, the design of new solutions, to meet the requirement of vehicular applications in terms of reliability while keeping low end-to-end delay, is required. In this thesis, we propose three schemes. The first scheme is a multi-hop reliable emergency message dissemination scheme, called REMD, which guarantees a predefined reliability , using message repetitions/retransmissions, while satisfying short delay requirements. It computes an optimal number of repetitions based on the estimation of link reception quality at different locations (called cells) in the transmission range of the sender; REMD assumes that link reception qualities of adjacent cells are independent. It also adequately selects a number of vehicles, called forwarders, that cooperate in repeating the emergency message with the objective to satisfy multi-hop reliability requirements. The second scheme, called BCRB, overcomes the shortcoming of REMD by assuming that link reception qualities of adjacent cells are dependent which is more realistic in real-life scenarios. BCRB makes use of Bayesian networks to model these dependencies; this allows for more accurate estimation of link reception qualities leading to better performance of BCRB. The third scheme, called RICS, provides internet access to vehicles by establishing multi-hop reliable paths to gateways. In RICS, the gateway placement is modeled as a k-center optimisation problem. A space dimension reduction technique is used to solve the problem in exact time. Each gateway makes use of BCRB to establish reliable communication paths to vehicles

    Maximizing Lifetime of Data Gathering Wireless Sensor Network

    Get PDF

    Cross-layer design for network performance optimization in wireless networks

    Get PDF
    In this dissertation, I use mathematical optimization approach to solve the complex network problems. Paper l and paper 2 first show that ignoring the bandwidth constraint can lead to infeasible routing solutions. A sufficient condition on link bandwidth is proposed that makes a routing solution feasible, and then a mathematical optimization model based on this sufficient condition is provided. Simulation results show that joint optimization models can provide more feasible routing solutions and provide significant improvement on throughput and lifetime. In paper 3 and paper 4, an interference model is proposed and a transmission scheduling scheme is presented to minimize the end-to-end delay. This scheduling scheme is designed based on integer linear programming and involves interference modeling. Using this schedule, there are no conflicting transmissions at any time. Through simulation, it shows that the proposed link scheduling scheme can significantly reduce end-to-end latency. Since to compute the maximum throughput is an NP-hard problem, efficient heuristics are presented in Paper 5 that use sufficient conditions instead of the computationally-expensive-to-get optimal condition to capture the mutual conflict relation in a collision domain. Both one-way transmission and two-way transmission are considered. Simulation results show that the proposed algorithms improve network throughput and reduce energy consumption, with significant improvement over previous work on both aspects. Paper 6 studies the complicated tradeoff relation among multiple factors that affect the sensor network lifetime and proposes an adaptive multi-hop clustering algorithm. It realizes the best tradeoff among multiple factors and outperforms others that do not. It is adaptive in the sense the clustering topology changes over time in order to have the maximum lifetime --Abstract, page iv

    Industry applications of neutral-atom quantum computing solving independent set problems

    Full text link
    Architectures for quantum computing based on neutral atoms have risen to prominence as candidates for both near and long-term applications. These devices are particularly well suited to solve independent set problems, as the combinatorial constraints can be naturally encoded in the low-energy Hilbert space due to the Rydberg blockade mechanism. Here, we approach this connection with a focus on a particular device architecture and explore the ubiquity and utility of independent set problems by providing examples of real-world applications. After a pedagogical introduction of basic graph theory concepts of relevance, we briefly discuss how to encode independent set problems in Rydberg Hamiltonians. We then outline the major classes of independent set problems and include associated example applications with industry and social relevance. We determine a wide range of sectors that could benefit from efficient solutions of independent set problems -- from telecommunications and logistics to finance and strategic planning -- and display some general strategies for efficient problem encoding and implementation on neutral-atom platforms.Comment: 28 pages, 9 example application
    • 

    corecore