8,190 research outputs found

    Bounded Search Tree Algorithms for Parameterized Cograph Deletion: Efficient Branching Rules by Exploiting Structures of Special Graph Classes

    Full text link
    Many fixed-parameter tractable algorithms using a bounded search tree have been repeatedly improved, often by describing a larger number of branching rules involving an increasingly complex case analysis. We introduce a novel and general search strategy that branches on the forbidden subgraphs of a graph class relaxation. By using the class of P4P_4-sparse graphs as the relaxed graph class, we obtain efficient bounded search tree algorithms for several parameterized deletion problems. We give the first non-trivial bounded search tree algorithms for the cograph edge-deletion problem and the trivially perfect edge-deletion problems. For the cograph vertex deletion problem, a refined analysis of the runtime of our simple bounded search algorithm gives a faster exponential factor than those algorithms designed with the help of complicated case distinctions and non-trivial running time analysis [21] and computer-aided branching rules [11].Comment: 23 pages. Accepted in Discrete Mathematics, Algorithms and Applications (DMAA

    A survey on algorithmic aspects of modular decomposition

    Full text link
    The modular decomposition is a technique that applies but is not restricted to graphs. The notion of module naturally appears in the proofs of many graph theoretical theorems. Computing the modular decomposition tree is an important preprocessing step to solve a large number of combinatorial optimization problems. Since the first polynomial time algorithm in the early 70's, the algorithmic of the modular decomposition has known an important development. This paper survey the ideas and techniques that arose from this line of research

    On colouring point visibility graphs

    Full text link
    In this paper we show that it can be decided in polynomial time whether or not the visibility graph of a given point set is 4-colourable, and such a 4-colouring, if it exists, can also be constructed in polynomial time. We show that the problem of deciding whether the visibility graph of a point set is 5-colourable, is NP-complete. We give an example of a point visibility graph that has chromatic number 6 while its clique number is only 4

    On Almost Well-Covered Graphs of Girth at Least 6

    Full text link
    We consider a relaxation of the concept of well-covered graphs, which are graphs with all maximal independent sets of the same size. The extent to which a graph fails to be well-covered can be measured by its independence gap, defined as the difference between the maximum and minimum sizes of a maximal independent set in GG. While the well-covered graphs are exactly the graphs of independence gap zero, we investigate in this paper graphs of independence gap one, which we also call almost well-covered graphs. Previous works due to Finbow et al. (1994) and Barbosa et al. (2013) have implications for the structure of almost well-covered graphs of girth at least kk for k{7,8}k\in \{7,8\}. We focus on almost well-covered graphs of girth at least 66. We show that every graph in this class has at most two vertices each of which is adjacent to exactly 22 leaves. We give efficiently testable characterizations of almost well-covered graphs of girth at least 66 having exactly one or exactly two such vertices. Building on these results, we develop a polynomial-time recognition algorithm of almost well-covered {C3,C4,C5,C7}\{C_3,C_4,C_5,C_7\}-free graphs
    corecore