1,920 research outputs found

    Minimum-Cost Coverage of Point Sets by Disks

    Full text link
    We consider a class of geometric facility location problems in which the goal is to determine a set X of disks given by their centers (t_j) and radii (r_j) that cover a given set of demand points Y in the plane at the smallest possible cost. We consider cost functions of the form sum_j f(r_j), where f(r)=r^alpha is the cost of transmission to radius r. Special cases arise for alpha=1 (sum of radii) and alpha=2 (total area); power consumption models in wireless network design often use an exponent alpha>2. Different scenarios arise according to possible restrictions on the transmission centers t_j, which may be constrained to belong to a given discrete set or to lie on a line, etc. We obtain several new results, including (a) exact and approximation algorithms for selecting transmission points t_j on a given line in order to cover demand points Y in the plane; (b) approximation algorithms (and an algebraic intractability result) for selecting an optimal line on which to place transmission points to cover Y; (c) a proof of NP-hardness for a discrete set of transmission points in the plane and any fixed alpha>1; and (d) a polynomial-time approximation scheme for the problem of computing a minimum cost covering tour (MCCT), in which the total cost is a linear combination of the transmission cost for the set of disks and the length of a tour/path that connects the centers of the disks.Comment: 10 pages, 4 figures, Latex, to appear in ACM Symposium on Computational Geometry 200

    A Constant-Factor Approximation for Multi-Covering with Disks

    Full text link
    We consider variants of the following multi-covering problem with disks. We are given two point sets YY (servers) and XX (clients) in the plane, a coverage function κ:XN\kappa :X \rightarrow \mathcal{N}, and a constant α1\alpha \geq 1. Centered at each server is a single disk whose radius we are free to set. The requirement is that each client xXx \in X be covered by at least κ(x)\kappa(x) of the server disks. The objective function we wish to minimize is the sum of the α\alpha-th powers of the disk radii. We present a polynomial time algorithm for this problem achieving an O(1)O(1) approximation

    Set It and Forget It: Approximating the Set Once Strip Cover Problem

    Full text link
    We consider the Set Once Strip Cover problem, in which n wireless sensors are deployed over a one-dimensional region. Each sensor has a fixed battery that drains in inverse proportion to a radius that can be set just once, but activated at any time. The problem is to find an assignment of radii and activation times that maximizes the length of time during which the entire region is covered. We show that this problem is NP-hard. Second, we show that RoundRobin, the algorithm in which the sensors simply take turns covering the entire region, has a tight approximation guarantee of 3/2 in both Set Once Strip Cover and the more general Strip Cover problem, in which each radius may be set finitely-many times. Moreover, we show that the more general class of duty cycle algorithms, in which groups of sensors take turns covering the entire region, can do no better. Finally, we give an optimal O(n^2 log n)-time algorithm for the related Set Radius Strip Cover problem, in which all sensors must be activated immediately.Comment: briefly announced at SPAA 201

    Approximate Clustering via Metric Partitioning

    Get PDF
    In this paper we consider two metric covering/clustering problems - \textit{Minimum Cost Covering Problem} (MCC) and kk-clustering. In the MCC problem, we are given two point sets XX (clients) and YY (servers), and a metric on XYX \cup Y. We would like to cover the clients by balls centered at the servers. The objective function to minimize is the sum of the α\alpha-th power of the radii of the balls. Here α1\alpha \geq 1 is a parameter of the problem (but not of a problem instance). MCC is closely related to the kk-clustering problem. The main difference between kk-clustering and MCC is that in kk-clustering one needs to select kk balls to cover the clients. For any \eps > 0, we describe quasi-polynomial time (1 + \eps) approximation algorithms for both of the problems. However, in case of kk-clustering the algorithm uses (1 + \eps)k balls. Prior to our work, a 3α3^{\alpha} and a cα{c}^{\alpha} approximation were achieved by polynomial-time algorithms for MCC and kk-clustering, respectively, where c>1c > 1 is an absolute constant. These two problems are thus interesting examples of metric covering/clustering problems that admit (1 + \eps)-approximation (using (1+\eps)k balls in case of kk-clustering), if one is willing to settle for quasi-polynomial time. In contrast, for the variant of MCC where α\alpha is part of the input, we show under standard assumptions that no polynomial time algorithm can achieve an approximation factor better than O(logX)O(\log |X|) for αlogX\alpha \geq \log |X|.Comment: 19 page

    Covering a line segment with variable radius discs

    Get PDF
    The paper addresses the problem of locating sensors with a circular field of view so that a given line segment is under full surveillance, which is termed as the Disc Covering Problem on a Line. The cost of each sensor includes a fixed component f, and a variable component that is a convex function of the diameter of the field-of- view area. When only one type of sensor or, in general, one type of disc, is available, then a simple polynomial algorithm solves the problem. When there are different types of sensors, the problem becomes hard. A branch-and-bound algorithm as well as an efficient heuristic are developed for the special case in which the variable cost component of each sensor is proportional to the square of the measure of the field-of-view area. The heuristic very often obtains the optimal solution as shown in extensive computational testing
    corecore