683 research outputs found

    Learning probability distributions generated by finite-state machines

    Get PDF
    We review methods for inference of probability distributions generated by probabilistic automata and related models for sequence generation. We focus on methods that can be proved to learn in the inference in the limit and PAC formal models. The methods we review are state merging and state splitting methods for probabilistic deterministic automata and the recently developed spectral method for nondeterministic probabilistic automata. In both cases, we derive them from a high-level algorithm described in terms of the Hankel matrix of the distribution to be learned, given as an oracle, and then describe how to adapt that algorithm to account for the error introduced by a finite sample.Peer ReviewedPostprint (author's final draft

    On the Learnability of Shuffle Ideals

    Get PDF
    PAC learning of unrestricted regular languages is long known to be a difficult problem. The class of shuffle ideals is a very restricted subclass of regular languages, where the shuffle ideal generated by a string u is the collection of all strings containing u as a subsequence. This fundamental language family is of theoretical interest in its own right and provides the building blocks for other important language families. Despite its apparent simplicity, the class of shuffle ideals appears quite difficult to learn. In particular, just as for unrestricted regular languages, the class is not properly PAC learnable in polynomial time if RP 6= NP, and PAC learning the class improperly in polynomial time would imply polynomial time algorithms for certain fundamental problems in cryptography. In the positive direction, we give an efficient algorithm for properly learning shuffle ideals in the statistical query (and therefore also PAC) model under the uniform distribution.T-Party Projec

    Pac-Learning Recursive Logic Programs: Efficient Algorithms

    Full text link
    We present algorithms that learn certain classes of function-free recursive logic programs in polynomial time from equivalence queries. In particular, we show that a single k-ary recursive constant-depth determinate clause is learnable. Two-clause programs consisting of one learnable recursive clause and one constant-depth determinate non-recursive clause are also learnable, if an additional ``basecase'' oracle is assumed. These results immediately imply the pac-learnability of these classes. Although these classes of learnable recursive programs are very constrained, it is shown in a companion paper that they are maximally general, in that generalizing either class in any natural way leads to a computationally difficult learning problem. Thus, taken together with its companion paper, this paper establishes a boundary of efficient learnability for recursive logic programs.Comment: See http://www.jair.org/ for any accompanying file

    : Méthodes d'Inférence Symbolique pour les Bases de Données

    Get PDF
    This dissertation is a summary of a line of research, that I wasactively involved in, on learning in databases from examples. Thisresearch focused on traditional as well as novel database models andlanguages for querying, transforming, and describing the schema of adatabase. In case of schemas our contributions involve proposing anoriginal languages for the emerging data models of Unordered XML andRDF. We have studied learning from examples of schemas for UnorderedXML, schemas for RDF, twig queries for XML, join queries forrelational databases, and XML transformations defined with a novelmodel of tree-to-word transducers.Investigating learnability of the proposed languages required us toexamine closely a number of their fundamental properties, often ofindependent interest, including normal forms, minimization,containment and equivalence, consistency of a set of examples, andfinite characterizability. Good understanding of these propertiesallowed us to devise learning algorithms that explore a possibly largesearch space with the help of a diligently designed set ofgeneralization operations in search of an appropriate solution.Learning (or inference) is a problem that has two parameters: theprecise class of languages we wish to infer and the type of input thatthe user can provide. We focused on the setting where the user inputconsists of positive examples i.e., elements that belong to the goallanguage, and negative examples i.e., elements that do not belong tothe goal language. In general using both negative and positiveexamples allows to learn richer classes of goal languages than usingpositive examples alone. However, using negative examples is oftendifficult because together with positive examples they may cause thesearch space to take a very complex shape and its exploration may turnout to be computationally challenging.Ce mémoire est une courte présentation d’une direction de recherche, à laquelle j’ai activementparticipé, sur l’apprentissage pour les bases de données à partir d’exemples. Cette recherches’est concentrée sur les modèles et les langages, aussi bien traditionnels qu’émergents, pourl’interrogation, la transformation et la description du schéma d’une base de données. Concernantles schémas, nos contributions consistent en plusieurs langages de schémas pour les nouveaumodèles de bases de données que sont XML non-ordonné et RDF. Nous avons ainsi étudiél’apprentissage à partir d’exemples des schémas pour XML non-ordonné, des schémas pour RDF,des requêtes twig pour XML, les requêtes de jointure pour bases de données relationnelles et lestransformations XML définies par un nouveau modèle de transducteurs arbre-à-mot.Pour explorer si les langages proposés peuvent être appris, nous avons été obligés d’examinerde près un certain nombre de leurs propriétés fondamentales, souvent souvent intéressantespar elles-mêmes, y compris les formes normales, la minimisation, l’inclusion et l’équivalence, lacohérence d’un ensemble d’exemples et la caractérisation finie. Une bonne compréhension de cespropriétés nous a permis de concevoir des algorithmes d’apprentissage qui explorent un espace derecherche potentiellement très vaste grâce à un ensemble d’opérations de généralisation adapté àla recherche d’une solution appropriée.L’apprentissage (ou l’inférence) est un problème à deux paramètres : la classe précise delangage que nous souhaitons inférer et le type d’informations que l’utilisateur peut fournir. Nousnous sommes placés dans le cas où l’utilisateur fournit des exemples positifs, c’est-à-dire deséléments qui appartiennent au langage cible, ainsi que des exemples négatifs, c’est-à-dire qui n’enfont pas partie. En général l’utilisation à la fois d’exemples positifs et négatifs permet d’apprendredes classes de langages plus riches que l’utilisation uniquement d’exemples positifs. Toutefois,l’utilisation des exemples négatifs est souvent difficile parce que les exemples positifs et négatifspeuvent rendre la forme de l’espace de recherche très complexe, et par conséquent, son explorationinfaisable

    On the Structure of Learnability Beyond P/Poly

    Get PDF
    Motivated by the goal of showing stronger structural results about the complexity of learning, we study the learnability of strong concept classes beyond P/poly, such as PSPACE/poly and EXP/poly. We show the following: 1) (Unconditional Lower Bounds for Learning) Building on [Adam R. Klivans et al., 2013], we prove unconditionally that BPE/poly cannot be weakly learned in polynomial time over the uniform distribution, even with membership and equivalence queries. 2) (Robustness of Learning) For the concept classes EXP/poly and PSPACE/poly, we show unconditionally that worst-case and average-case learning are equivalent, that PAC-learnability and learnability over the uniform distribution are equivalent, and that membership queries do not help in either case. 3) (Reducing Succinct Search to Decision for Learning) For the decision problems R_{Kt} and R_{KS} capturing the complexity of learning EXP/poly and PSPACE/poly respectively, we show a succinct search to decision reduction: for each of these problems, the problem is in BPP iff there is a probabilistic polynomial-time algorithm computing circuits encoding proofs for positive instances of the problem. This is shown via a more general result giving succinct search to decision results for PSPACE, EXP and NEXP, which might be of independent interest. 4) (Implausibility of Oblivious Strongly Black-Box Reductions showing NP-hardness of learning NP/poly) We define a natural notion of hardness of learning with respect to oblivious strongly black-box reductions. We show that learning PSPACE/poly is PSPACE-hard with respect to oblivious strongly black-box reductions. On the other hand, if learning NP/poly is NP-hard with respect to oblivious strongly black-box reductions, the Polynomial Hierarchy collapses

    Cumulative subject index Volumes 90–95

    Get PDF
    • …
    corecore