1,928 research outputs found

    Image reconstruction from incomplete information

    Get PDF
    Imperial Users onl

    Phase Retrieval for Sparse Signals: Uniqueness Conditions

    Get PDF
    In a variety of fields, in particular those involving imaging and optics, we often measure signals whose phase is missing or has been irremediably distorted. Phase retrieval attempts the recovery of the phase information of a signal from the magnitude of its Fourier transform to enable the reconstruction of the original signal. A fundamental question then is: "Under which conditions can we uniquely recover the signal of interest from its measured magnitudes?" In this paper, we assume the measured signal to be sparse. This is a natural assumption in many applications, such as X-ray crystallography, speckle imaging and blind channel estimation. In this work, we derive a sufficient condition for the uniqueness of the solution of the phase retrieval (PR) problem for both discrete and continuous domains, and for one and multi-dimensional domains. More precisely, we show that there is a strong connection between PR and the turnpike problem, a classic combinatorial problem. We also prove that the existence of collisions in the autocorrelation function of the signal may preclude the uniqueness of the solution of PR. Then, assuming the absence of collisions, we prove that the solution is almost surely unique on 1-dimensional domains. Finally, we extend this result to multi-dimensional signals by solving a set of 1-dimensional problems. We show that the solution of the multi-dimensional problem is unique when the autocorrelation function has no collisions, significantly improving upon a previously known result.Comment: submitted to IEEE TI

    Reconstruction of two-dimensional signals from the Fourier transform magnitude

    Get PDF
    Originally presented as author's thesis (Sc. D.--Massachusetts Institute of Technology), 1986.Bibliography: p. 155-158.Supported in part by the Advanced Research Projects Agency monitored by ONR under contract no. N00014-81-K-0742 Supported in part by the National Science Foundation under grant ECS-8407285David Izraelevitz

    Signal reconstruction from phase or magnitude

    Get PDF
    Thesis (Sc.D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1981.MICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING.Vita.Bibliography: leaves 146-150.by Monson H. Hayes III.Sc.D

    Numerical methods for phase retrieval

    Full text link
    In this work we consider the problem of reconstruction of a signal from the magnitude of its Fourier transform, also known as phase retrieval. The problem arises in many areas of astronomy, crystallography, optics, and coherent diffraction imaging (CDI). Our main goal is to develop an efficient reconstruction method based on continuous optimization techniques. Unlike current reconstruction methods, which are based on alternating projections, our approach leads to a much faster and more robust method. However, all previous attempts to employ continuous optimization methods, such as Newton-type algorithms, to the phase retrieval problem failed. In this work we provide an explanation for this failure, and based on this explanation we devise a sufficient condition that allows development of new reconstruction methods---approximately known Fourier phase. We demonstrate that a rough (up to π/2\pi/2 radians) Fourier phase estimate practically guarantees successful reconstruction by any reasonable method. We also present a new reconstruction method whose reconstruction time is orders of magnitude faster than that of the current method-of-choice in phase retrieval---Hybrid Input-Output (HIO). Moreover, our method is capable of successful reconstruction even in the situations where HIO is known to fail. We also extended our method to other applications: Fourier domain holography, and interferometry. Additionally we developed a new sparsity-based method for sub-wavelength CDI. Using this method we demonstrated experimental resolution exceeding several times the physical limit imposed by the diffraction light properties (so called diffraction limit).Comment: PhD. Thesi

    Toward single particle reconstruction without particle picking: Breaking the detection limit

    Full text link
    Single-particle cryo-electron microscopy (cryo-EM) has recently joined X-ray crystallography and NMR spectroscopy as a high-resolution structural method for biological macromolecules. In a cryo-EM experiment, the microscope produces images called micrographs. Projections of the molecule of interest are embedded in the micrographs at unknown locations, and under unknown viewing directions. Standard imaging techniques first locate these projections (detection) and then reconstruct the 3-D structure from them. Unfortunately, high noise levels hinder detection. When reliable detection is rendered impossible, the standard techniques fail. This is a problem especially for small molecules, which can be particularly hard to detect. In this paper, we propose a radically different approach: we contend that the structure could, in principle, be reconstructed directly from the micrographs, without intermediate detection. As a result, even small molecules should be within reach for cryo-EM. To support this claim, we setup a simplified mathematical model and demonstrate how our autocorrelation analysis technique allows to go directly from the micrographs to the sought signals. This involves only one pass over the micrographs, which is desirable for large experiments. We show numerical results and discuss challenges that lay ahead to turn this proof-of-concept into a competitive alternative to state-of-the-art algorithms

    The Data Big Bang and the Expanding Digital Universe: High-Dimensional, Complex and Massive Data Sets in an Inflationary Epoch

    Get PDF
    Recent and forthcoming advances in instrumentation, and giant new surveys, are creating astronomical data sets that are not amenable to the methods of analysis familiar to astronomers. Traditional methods are often inadequate not merely because of the size in bytes of the data sets, but also because of the complexity of modern data sets. Mathematical limitations of familiar algorithms and techniques in dealing with such data sets create a critical need for new paradigms for the representation, analysis and scientific visualization (as opposed to illustrative visualization) of heterogeneous, multiresolution data across application domains. Some of the problems presented by the new data sets have been addressed by other disciplines such as applied mathematics, statistics and machine learning and have been utilized by other sciences such as space-based geosciences. Unfortunately, valuable results pertaining to these problems are mostly to be found only in publications outside of astronomy. Here we offer brief overviews of a number of concepts, techniques and developments, some "old" and some new. These are generally unknown to most of the astronomical community, but are vital to the analysis and visualization of complex datasets and images. In order for astronomers to take advantage of the richness and complexity of the new era of data, and to be able to identify, adopt, and apply new solutions, the astronomical community needs a certain degree of awareness and understanding of the new concepts. One of the goals of this paper is to help bridge the gap between applied mathematics, artificial intelligence and computer science on the one side and astronomy on the other.Comment: 24 pages, 8 Figures, 1 Table. Accepted for publication: "Advances in Astronomy, special issue "Robotic Astronomy
    corecore