2,119 research outputs found

    Non-deterministic Semantics in Polynomial Format

    Get PDF
    AbstractThe method for automatic theorem proving proposed in [Carnielli, W. A., Polynomial ring calculus for many-valued logics, Proceedings of the 35th International Symposium on Multiple-Valued Logic, IEEE Computer Society. Calgary, Canada (2005), 20–25], called Polynomial Ring Calculus, is an algebraic proof mechanism based on handling polynomials over finite fields. Although useful in general domains, as in first-order logic, certain non-truth-functional logics and even in modal logics (see [Agudelo, J. C., Carnielli, W. A., Polynomial Ring Calculus for Modal Logics: a new semantics and proof method for modalities, The Review of Symbolic Logic. 4 (2011), 150–170, URL: doi:10.1017/S1755020310000213]), the method is particularly apt for deterministic and non-deterministic many-valued logics, as shown here. The aim of the present paper is to show how the method can be extended to any finite-valued non-deterministic semantics, and also to explore the computational character of the method through the development of a software capable of translating provability in deterministic and non-deterministic finite-valued logical systems into operations on polynomial rings

    Tangent Categories from the Coalgebras of Differential Categories

    Get PDF
    Following the pattern from linear logic, the coKleisli category of a differential category is a Cartesian differential category. What then is the coEilenberg-Moore category of a differential category? The answer is a tangent category! A key example arises from the opposite of the category of Abelian groups with the free exponential modality. The coEilenberg-Moore category, in this case, is the opposite of the category of commutative rings. That the latter is a tangent category captures a fundamental aspect of both algebraic geometry and Synthetic Differential Geometry. The general result applies when there are no negatives and thus encompasses examples arising from combinatorics and computer science

    An Embedding of the BSS Model of Computation in Light Affine Lambda-Calculus

    Full text link
    This paper brings together two lines of research: implicit characterization of complexity classes by Linear Logic (LL) on the one hand, and computation over an arbitrary ring in the Blum-Shub-Smale (BSS) model on the other. Given a fixed ring structure K we define an extension of Terui's light affine lambda-calculus typed in LAL (Light Affine Logic) with a basic type for K. We show that this calculus captures the polynomial time function class FP(K): every typed term can be evaluated in polynomial time and conversely every polynomial time BSS machine over K can be simulated in this calculus.Comment: 11 pages. A preliminary version appeared as Research Report IAC CNR Roma, N.57 (11/2004), november 200

    POLYNOMIAL RING CALCULUS FOR MODAL LOGICS: A NEW SEMANTICS AND PROOF METHOD FOR MODALITIES

    Get PDF
    Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)A new (sound and complete) proof style adequate for modal logics is defined from the polynomial ring calculus (PRC). The new semantics not only expresses truth conditions of modal formulas by means of polynomials, but also permits to perform deductions through polynomial handling. This paper also investigates relationships among the PRC here defined, the algebraic semantics for modal logics, equational logics, the Dijkstra-Scholten equational-proof style, and rewriting systems. The method proposed is throughly exemplified for S5, and can be easily extended to other modal logics.41150170Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fonds National de la Recherche LuxembourgFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)FAPESP [2004/14107-2, 05/04123-3]CNPq [300702/2005-1

    Modelling Coeffects in the Relational Semantics of Linear Logic

    Get PDF
    Various typing system have been recently introduced giving a parametric version of the exponential modality of linear logic. The parameters are taken from a semi-ring, and allow to express coeffects - i.e. specific requirements of a program with respect to the environment (availability of a resource, some prerequisite of the input, etc.). We show that all these systems can be interpreted in the relational category (Rel) of sets and relations. This is possible because of the notion of multiplicity semi-ring and allowing a great variety of exponential comonads in Rel. The interpretation of a particular typing system corresponds then to give a suitable notion of stratification of the exponential comonad associated with the semi-ring parametrising the exponential modality

    3D mesh processing using GAMer 2 to enable reaction-diffusion simulations in realistic cellular geometries

    Full text link
    Recent advances in electron microscopy have enabled the imaging of single cells in 3D at nanometer length scale resolutions. An uncharted frontier for in silico biology is the ability to simulate cellular processes using these observed geometries. Enabling such simulations requires watertight meshing of electron micrograph images into 3D volume meshes, which can then form the basis of computer simulations of such processes using numerical techniques such as the Finite Element Method. In this paper, we describe the use of our recently rewritten mesh processing software, GAMer 2, to bridge the gap between poorly conditioned meshes generated from segmented micrographs and boundary marked tetrahedral meshes which are compatible with simulation. We demonstrate the application of a workflow using GAMer 2 to a series of electron micrographs of neuronal dendrite morphology explored at three different length scales and show that the resulting meshes are suitable for finite element simulations. This work is an important step towards making physical simulations of biological processes in realistic geometries routine. Innovations in algorithms to reconstruct and simulate cellular length scale phenomena based on emerging structural data will enable realistic physical models and advance discovery at the interface of geometry and cellular processes. We posit that a new frontier at the intersection of computational technologies and single cell biology is now open.Comment: 39 pages, 14 figures. High resolution figures and supplemental movies available upon reques

    Cognitive networks: brains, internet, and civilizations

    Get PDF
    In this short essay, we discuss some basic features of cognitive activity at several different space-time scales: from neural networks in the brain to civilizations. One motivation for such comparative study is its heuristic value. Attempts to better understand the functioning of "wetware" involved in cognitive activities of central nervous system by comparing it with a computing device have a long tradition. We suggest that comparison with Internet might be more adequate. We briefly touch upon such subjects as encoding, compression, and Saussurean trichotomy langue/langage/parole in various environments.Comment: 16 page

    A Deductive Approach towards Reasoning about Algebraic Transition Systems

    Get PDF
    Algebraic transition systems are extended from labeled transition systems by allowing transitions labeled by algebraic equations for modeling more complex systems in detail. We present a deductive approach for specifying and verifying algebraic transition systems. We modify the standard dynamic logic by introducing algebraic equations into modalities. Algebraic transition systems are embedded in modalities of logic formulas which specify properties of algebraic transition systems. The semantics of modalities and formulas is defined with solutions of algebraic equations. A proof system for this logic is constructed to verify properties of algebraic transition systems. The proof system combines with inference rules decision procedures on the theory of polynomial ideals to reduce a proof-search problem to an algebraic computation problem. The proof system proves to be sound but inherently incomplete. Finally, a typical example illustrates that reasoning about algebraic transition systems with our approach is feasible
    • …
    corecore