9,722 research outputs found

    New Acceleration of Nearly Optimal Univariate Polynomial Root-findERS

    Full text link
    Univariate polynomial root-finding has been studied for four millennia and is still the subject of intensive research. Hundreds of efficient algorithms for this task have been proposed. Two of them are nearly optimal. The first one, proposed in 1995, relies on recursive factorization of a polynomial, is quite involved, and has never been implemented. The second one, proposed in 2016, relies on subdivision iterations, was implemented in 2018, and promises to be practically competitive, although user's current choice for univariate polynomial root-finding is the package MPSolve, proposed in 2000, revised in 2014, and based on Ehrlich's functional iterations. By proposing and incorporating some novel techniques we significantly accelerate both subdivision and Ehrlich's iterations. Moreover our acceleration of the known subdivision root-finders is dramatic in the case of sparse input polynomials. Our techniques can be of some independent interest for the design and analysis of polynomial root-finders.Comment: 89 pages, 5 figures, 2 table

    Special Algorithm for Stability Analysis of Multistable Biological Regulatory Systems

    Full text link
    We consider the problem of counting (stable) equilibriums of an important family of algebraic differential equations modeling multistable biological regulatory systems. The problem can be solved, in principle, using real quantifier elimination algorithms, in particular real root classification algorithms. However, it is well known that they can handle only very small cases due to the enormous computing time requirements. In this paper, we present a special algorithm which is much more efficient than the general methods. Its efficiency comes from the exploitation of certain interesting structures of the family of differential equations.Comment: 24 pages, 5 algorithms, 10 figure

    Efficiently Computing Real Roots of Sparse Polynomials

    Full text link
    We propose an efficient algorithm to compute the real roots of a sparse polynomial fR[x]f\in\mathbb{R}[x] having kk non-zero real-valued coefficients. It is assumed that arbitrarily good approximations of the non-zero coefficients are given by means of a coefficient oracle. For a given positive integer LL, our algorithm returns disjoint disks Δ1,,ΔsC\Delta_{1},\ldots,\Delta_{s}\subset\mathbb{C}, with s<2ks<2k, centered at the real axis and of radius less than 2L2^{-L} together with positive integers μ1,,μs\mu_{1},\ldots,\mu_{s} such that each disk Δi\Delta_{i} contains exactly μi\mu_{i} roots of ff counted with multiplicity. In addition, it is ensured that each real root of ff is contained in one of the disks. If ff has only simple real roots, our algorithm can also be used to isolate all real roots. The bit complexity of our algorithm is polynomial in kk and logn\log n, and near-linear in LL and τ\tau, where 2τ2^{-\tau} and 2τ2^{\tau} constitute lower and upper bounds on the absolute values of the non-zero coefficients of ff, and nn is the degree of ff. For root isolation, the bit complexity is polynomial in kk and logn\log n, and near-linear in τ\tau and logσ1\log\sigma^{-1}, where σ\sigma denotes the separation of the real roots

    Fast generation of stability charts for time-delay systems using continuation of characteristic roots

    Full text link
    Many dynamic processes involve time delays, thus their dynamics are governed by delay differential equations (DDEs). Studying the stability of dynamic systems is critical, but analyzing the stability of time-delay systems is challenging because DDEs are infinite-dimensional. We propose a new approach to quickly generate stability charts for DDEs using continuation of characteristic roots (CCR). In our CCR method, the roots of the characteristic equation of a DDE are written as implicit functions of the parameters of interest, and the continuation equations are derived in the form of ordinary differential equations (ODEs). Numerical continuation is then employed to determine the characteristic roots at all points in a parametric space; the stability of the original DDE can then be easily determined. A key advantage of the proposed method is that a system of linearly independent ODEs is solved rather than the typical strategy of solving a large eigenvalue problem at each grid point in the domain. Thus, the CCR method significantly reduces the computational effort required to determine the stability of DDEs. As we demonstrate with several examples, the CCR method generates highly accurate stability charts, and does so up to 10 times faster than the Galerkin approximation method.Comment: 12 pages, 6 figure

    Clustering Complex Zeros of Triangular Systems of Polynomials

    Get PDF
    This paper gives the first algorithm for finding a set of natural ϵ\epsilon-clusters of complex zeros of a triangular system of polynomials within a given polybox in Cn\mathbb{C}^n, for any given ϵ>0\epsilon>0. Our algorithm is based on a recent near-optimal algorithm of Becker et al (2016) for clustering the complex roots of a univariate polynomial where the coefficients are represented by number oracles. Our algorithm is numeric, certified and based on subdivision. We implemented it and compared it with two well-known homotopy solvers on various triangular systems. Our solver always gives correct answers, is often faster than the homotopy solver that often gives correct answers, and sometimes faster than the one that gives sometimes correct results.Comment: Research report V6: description of the main algorithm update

    Computing Periods of Hypersurfaces

    Full text link
    We give an algorithm to compute the periods of smooth projective hypersurfaces of any dimension. This is an improvement over existing algorithms which could only compute the periods of plane curves. Our algorithm reduces the evaluation of period integrals to an initial value problem for ordinary differential equations of Picard-Fuchs type. In this way, the periods can be computed to extreme-precision in order to study their arithmetic properties. The initial conditions are obtained by an exact determination of the cohomology pairing on Fermat hypersurfaces with respect to a natural basis.Comment: 33 pages; Final version. Fixed typos, minor expository changes. Changed code repository lin
    corecore