1,052 research outputs found

    Comparative Study of Classification Techniques on Breast Cancer FNA Biopsy Data

    Get PDF
    Accurate diagnostic detection of the cancerous cells in a patient is critical and may alter the subsequent treatment and increase the chances of survival rate. Machine learning techniques have been instrumental in disease detection and are currently being used in various classification problems due to their accurate prediction performance. Various techniques may provide different desired accuracies and it is therefore imperative to use the most suitable method which provides the best desired results. This research seeks to provide comparative analysis of Support Vector Machine, Bayesian classifier and other Artificial neural network classifiers (Backpropagation, linear programming, Learning vector quantization, and K nearest neighborhood) on the Wisconsin breast cancer classification problem

    A Cost Sensitive SVM and Neural Network Ensemble Model for Breast Cancer Classification

    Get PDF
    Breast Cancer has surpassed all categories of cancer in incidence and is the most prevalent form of cancer in women worldwide. The global incidence rate is seen to be highest in the country of Belgium as per statistics of WHO. In the case of developing countries specifically, India, it has overtaken other cancers and stands first in incidence and mortality. Major factors identified as impacting the prognosis and survival in the country is chiefly the late diagnosis of the disease and diverse situations prevailing in different parts of the country including lack of diagnostic facilities, lack of awareness, fear of undergoing existing procedures and so on. This is also true for many other countries in the world. Early diagnosis is a vital factor for survival. The implementation of machine learning techniques in cancer prediction, diagnosis and classification can assist medical practitioners as a supplementary diagnostic tool. In this work, an ensemble model of a polynomial kernel-based Support Vector machines and Gradient Descent with Momentum Back Propagation Artificial Neural Networks for Breast Cancer Classification is proposed. Feature selection is applied using Genetic Search for identifying the best feature set and data sampling techniques such as combination of oversampling and undersampling and cost senstivke learning are applied on the individual Neural Network and Support Vector Machine classifiers to deal with issues related with class imbalance. The ensemble model is seen to show superior performance in comparison with other models producing an accuracy of 99.12%

    An investigation of the breast cancer classification using various machine learning techniques

    Get PDF
    It is an extremely cumbersome process to predict a disease based on the visual diagnosis of cell type with precision or accuracy, especially when multiple features are associated. Cancer is one such example where the phenomenon is very complex and also multiple features of cell types are involved. Breast cancer is a disease mostly affects female population and the number of affected people is highest among all cancer types in India. In the present investigation, various pattern recognition techniques were used for the classification of breast cancer using cell image processing. Under these pattern recognition techniques, cell image segmentation, texture based image feature extraction and subsequent classification of breast cancer cells was successfully performed. When four different machine learning techniques: Kth nearest neighbor (KNN), Artificial Neural Network ( ANN), Support Vector Machine (SVM) and Least Square Support Vector Machine (LS-SVM) was used to classify 81 cell images, it was observed from the results that the LS-SVM with both Radial Basis Function (RBF) and linear kernel classifiers demonstrated the highest classification rate of 95.3488% among four other classifiers while SVM with linear kernel resulted a classification rate of 93.02% which was close to LSSVM classifier. Thus, it was demonstrated that the LS-SVM classifier showed accuracy higher than other classifiers reported so far. Moreover, our classifier can classify the disease in a short period of time using only cell images unlike other approaches reported so far

    Radial Basis Function Neural Networks : A Review

    Get PDF
    Radial Basis Function neural networks (RBFNNs) represent an attractive alternative to other neural network models. One reason is that they form a unifying link between function approximation, regularization, noisy interpolation, classification and density estimation. It is also the case that training RBF neural networks is faster than training multi-layer perceptron networks. RBFNN learning is usually split into an unsupervised part, where center and widths of the Gaussian basis functions are set, and a linear supervised part for weight computation. This paper reviews various learning methods for determining centers, widths, and synaptic weights of RBFNN. In addition, we will point to some applications of RBFNN in various fields. In the end, we name software that can be used for implementing RBFNNs

    Cancer diagnosis using deep learning: A bibliographic review

    Get PDF
    In this paper, we first describe the basics of the field of cancer diagnosis, which includes steps of cancer diagnosis followed by the typical classification methods used by doctors, providing a historical idea of cancer classification techniques to the readers. These methods include Asymmetry, Border, Color and Diameter (ABCD) method, seven-point detection method, Menzies method, and pattern analysis. They are used regularly by doctors for cancer diagnosis, although they are not considered very efficient for obtaining better performance. Moreover, considering all types of audience, the basic evaluation criteria are also discussed. The criteria include the receiver operating characteristic curve (ROC curve), Area under the ROC curve (AUC), F1 score, accuracy, specificity, sensitivity, precision, dice-coefficient, average accuracy, and Jaccard index. Previously used methods are considered inefficient, asking for better and smarter methods for cancer diagnosis. Artificial intelligence and cancer diagnosis are gaining attention as a way to define better diagnostic tools. In particular, deep neural networks can be successfully used for intelligent image analysis. The basic framework of how this machine learning works on medical imaging is provided in this study, i.e., pre-processing, image segmentation and post-processing. The second part of this manuscript describes the different deep learning techniques, such as convolutional neural networks (CNNs), generative adversarial models (GANs), deep autoencoders (DANs), restricted Boltzmann’s machine (RBM), stacked autoencoders (SAE), convolutional autoencoders (CAE), recurrent neural networks (RNNs), long short-term memory (LTSM), multi-scale convolutional neural network (M-CNN), multi-instance learning convolutional neural network (MIL-CNN). For each technique, we provide Python codes, to allow interested readers to experiment with the cited algorithms on their own diagnostic problems. The third part of this manuscript compiles the successfully applied deep learning models for different types of cancers. Considering the length of the manuscript, we restrict ourselves to the discussion of breast cancer, lung cancer, brain cancer, and skin cancer. The purpose of this bibliographic review is to provide researchers opting to work in implementing deep learning and artificial neural networks for cancer diagnosis a knowledge from scratch of the state-of-the-art achievements
    corecore