2,916 research outputs found

    Lattice Points in Orthotopes and a Huge Polynomial Tutte Invariant of Weighted Gain Graphs

    Full text link
    A gain graph is a graph whose edges are orientably labelled from a group. A weighted gain graph is a gain graph with vertex weights from an abelian semigroup, where the gain group is lattice ordered and acts on the weight semigroup. For weighted gain graphs we establish basic properties and we present general dichromatic and forest-expansion polynomials that are Tutte invariants (they satisfy Tutte's deletion-contraction and multiplicative identities). Our dichromatic polynomial includes the classical graph one by Tutte, Zaslavsky's two for gain graphs, Noble and Welsh's for graphs with positive integer weights, and that of rooted integral gain graphs by Forge and Zaslavsky. It is not a universal Tutte invariant of weighted gain graphs; that remains to be found. An evaluation of one example of our polynomial counts proper list colorations of the gain graph from a color set with a gain-group action. When the gain group is Z^d, the lists are order ideals in the integer lattice Z^d, and there are specified upper bounds on the colors, then there is a formula for the number of bounded proper colorations that is a piecewise polynomial function of the upper bounds, of degree nd where n is the order of the graph. This example leads to graph-theoretical formulas for the number of integer lattice points in an orthotope but outside a finite number of affinographic hyperplanes, and for the number of n x d integral matrices that lie between two specified matrices but not in any of certain subspaces defined by simple row equations.Comment: 32 pp. Submitted in 2007, extensive revisions in 2013 (!). V3: Added references, clarified examples. 35 p

    Enumeration of simple random walks and tridiagonal matrices

    Full text link
    We present some old and new results in the enumeration of random walks in one dimension, mostly developed in works of enumerative combinatorics. The relation between the trace of the nn-th power of a tridiagonal matrix and the enumeration of weighted paths of nn steps allows an easier combinatorial enumeration of the paths. It also seems promising for the theory of tridiagonal random matrices .Comment: several ref.and comments added, misprints correcte

    Donaldson-Thomas invariants, torus knots, and lattice paths

    Get PDF
    In this paper we find and explore the correspondence between quivers, torus knots, and combinatorics of counting paths. Our first result pertains to quiver representation theory -- we find explicit formulae for classical generating functions and Donaldson-Thomas invariants of an arbitrary symmetric quiver. We then focus on quivers corresponding to (r,s)(r,s) torus knots and show that their classical generating functions, in the extremal limit and framing rsrs, are generating functions of lattice paths under the line of the slope r/sr/s. Generating functions of such paths satisfy extremal A-polynomial equations, which immediately follows after representing them in terms of the Duchon grammar. Moreover, these extremal A-polynomial equations encode Donaldson-Thomas invariants, which provides an interesting example of algebraicity of generating functions of these invariants. We also find a quantum generalization of these statements, i.e. a relation between motivic quiver generating functions, quantum extremal knot invariants, and qq-weighted path counting. Finally, in the case of the unknot, we generalize this correspondence to the full HOMFLY-PT invariants and counting of Schr\"oder paths.Comment: 45 pages. Corrected typos in new versio
    • …
    corecore