168 research outputs found

    MINVO Basis: Finding Simplexes with Minimum Volume Enclosing Polynomial Curves

    Full text link
    This paper studies the problem of finding the smallest nn-simplex enclosing a given nthn^{\text{th}}-degree polynomial curve. Although the Bernstein and B-Spline polynomial bases provide feasible solutions to this problem, the simplexes obtained by these bases are not the smallest possible, which leads to undesirably conservative results in many applications. We first prove that the polynomial basis that solves this problem (MINVO basis) also solves for the nthn^\text{th}-degree polynomial curve with largest convex hull enclosed in a given nn-simplex. Then, we present a formulation that is \emph{independent} of the nn-simplex or nthn^{\text{th}}-degree polynomial curve given. By using Sum-Of-Squares (SOS) programming, branch and bound, and moment relaxations, we obtain high-quality feasible solutions for any n∈Nn\in\mathbb{N} and prove numerical global optimality for n=1,2,3n=1,2,3. The results obtained for n=3n=3 show that, for any given 3rd3^{\text{rd}}-degree polynomial curve, the MINVO basis is able to obtain an enclosing simplex whose volume is 2.362.36 and 254.9254.9 times smaller than the ones obtained by the Bernstein and B-Spline bases, respectively. When n=7n=7, these ratios increase to 902.7902.7 and 2.997⋅10212.997\cdot10^{21}, respectively.Comment: 25 pages, 16 figure

    Non-acyclicity of coset lattices and generation of finite groups

    Get PDF

    Real Algebraic Geometry with a View Toward Hyperbolic Programming and Free Probability

    Get PDF
    Continuing the tradition initiated in the MFO workshops held in 2014 and 2017, this workshop was dedicated to the newest developments in real algebraic geometry and polynomial optimization, with a particular emphasis on free non-commutative real algebraic geometry and hyperbolic programming. A particular effort was invested in exploring the interrelations with free probability. This established an interesting dialogue between researchers working in real algebraic geometry and those working in free probability, from which emerged new exciting and promising synergies

    Algebraic level sets for CAD/CAE integration and moving boundary problems

    Get PDF
    Boundary representation (B-rep) of CAD models obtained from solid modeling kernels are commonly used in design, and analysis applications outside the CAD systems. Boolean operations between interacting B-rep CAD models as well as analysis of such multi-body systems are fundamental operations on B-rep geometries in CAD/CAE applications. However, the boundary representation of B-rep solids is, in general, not a suitable representation for analysis operations which lead to CAD/CAE integration challenges due to the need for conversion from B-rep to volumetric approximations. The major challenges include intermediate mesh generation step, capturing CAD features and associated behavior exactly and recurring point containment queries for point classification as inside/outside the solid. Thus, an ideal analysis technique for CAD/CAE integration that can enable direct analysis operations on B-rep CAD models while overcoming the associated challenges is desirable. ^ Further, numerical surface intersection operations are typically necessary for boolean operations on B-rep geometries during the CAD and CAE phases. However, for non-linear geometries, surface intersection operations are non-trivial and face the challenge of simultaneously satisfying the three goals of accuracy, efficiency and robustness. In the class of problems involving multi-body interactions, often an implicit knowledge of the boolean operation is sufficient and explicit intersection computation may not be needed. Such implicit boolean operations can be performed by point containment queries on B-rep CAD models. However, for complex non-linear B-rep geometries, the point containment queries may involve numerical iterative point projection operations which are expensive. Thus, there is a need for inexpensive, non-iterative techniques to enable such implicit boolean operations on B-rep geometries. ^ Moreover, in analysis problems with evolving boundaries (ormoving boundary problems), interfaces or cracks, blending functions are used to enrich the underlying domain with the known behavior on the enriching entity. The blending functions are typically dependent on the distance from the evolving boundaries. For boundaries defined by free form curves or surfaces, the distance fields have to be constructed numerically. This may require either a polytope approximation to the boundary and/or an iterative solution to determine the exact distance to the boundary. ^ In this work a purely algebraic, and computationally efficient technique is described for constructing signed distance measures from Non-Uniform Rational B-Splines (NURBS) boundaries that retain the geometric exactness of the boundaries while eliminating the need for iterative and non-robust distance calculation. The proposed technique exploits the NURBS geometry and algebraic tools of implicitization. Such a signed distance measure, also referred to as the Algebraic Level Sets, gives a volumetric representation of the B-rep geometry constructed by purely non-iterative algebraic operations on the geometry. This in turn enables both the implicit boolean operations and analysis operations on B-rep geometries in CAD/CAE applications. Algebraic level sets ensure exactness of geometry while eliminating iterative numerical computations. Further, a geometry-based analysis technique that relies on hierarchical partition of unity field compositions (HPFC) theory and its extension to enriched field modeling is presented. The proposed technique enables direct analysis of complex physical problems without meshing, thus, integrating CAD and CAE. The developed techniques are demonstrated by constructing algebraic level sets for complex geometries, geometry-based analysis of B-rep CAD models and a variety of fracture examples culminating in the analysis of steady state heat conduction in a solid with arbitrary shaped three-dimensional cracks. ^ The proposed techniques are lastly applied to investigate the risk of fracture in the ultra low-k (ULK) dies due to copper (Cu) wirebonding process. Maximum damage induced in the interlayer dielectric (ILD) stack during the process steps is proposed as an indicator of the reliability risk. Numerical techniques based on enriched isogeometric approximations are adopted to model damage in the ULK stacks using a cohesive damage description. A damage analysis procedure is proposed to conduct damage accumulation studies during Cu wirebonding process. Analysis is carried out to identify weak interfaces and potential sites for crack nucleation as well as damage nucleation patterns. Further, the critical process condition is identified by analyzing the damage induced during the impact and ultrasonic excitation stages. Also, representative ILD stack designs with varying Cu percentage are compared for risk of fracture

    Real Algebraic Geometry With a View Toward Moment Problems and Optimization

    Get PDF
    Continuing the tradition initiated in MFO workshop held in 2014, the aim of this workshop was to foster the interaction between real algebraic geometry, operator theory, optimization, and algorithms for systems control. A particular emphasis was given to moment problems through an interesting dialogue between researchers working on these problems in finite and infinite dimensional settings, from which emerged new challenges and interdisciplinary applications

    The Multilevel Structures of NURBs and NURBlets on Intervals

    Get PDF
    This dissertation is concerned with the problem of constructing biorthogonal wavelets based on non-uniform rational cubic B-Splines on intervals. We call non-uniform rational B-Splines ``NURBs , and such biorthogonal wavelets ``NURBlets . Constructing NURBlets is useful in designing and representing an arbitrary shape of an object in the industry, especially when exactness of the shape is critical such as the shape of an aircraft. As we know presently most popular wavelet models in the industry are approximated at boundaries. In this dissertation a new model is presented that is well suited for generating arbitrary shapes in the industry with mathematical exactness throughout intervals; it fulfills interpolation at boundaries as well

    Q(sqrt(-3))-Integral Points on a Mordell Curve

    Get PDF
    We use an extension of quadratic Chabauty to number fields,recently developed by the author with Balakrishnan, Besser and M ̈uller,combined with a sieving technique, to determine the integral points overQ(√−3) on the Mordell curve y2 = x3 − 4

    Interval simplex splines for scientific databases

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Ocean Engineering, 1995.Includes bibliographical references (p. 130-138).by Jingfang Zhou.Ph.D
    • …
    corecore