907 research outputs found

    Oracles and query lower bounds in generalised probabilistic theories

    Get PDF
    We investigate the connection between interference and computational power within the operationally defined framework of generalised probabilistic theories. To compare the computational abilities of different theories within this framework we show that any theory satisfying three natural physical principles possess a well-defined oracle model. Indeed, we prove a subroutine theorem for oracles in such theories which is a necessary condition for the oracle to be well-defined. The three principles are: causality (roughly, no signalling from the future), purification (each mixed state arises as the marginal of a pure state of a larger system), and strong symmetry existence of non-trivial reversible transformations). Sorkin has defined a hierarchy of conceivable interference behaviours, where the order in the hierarchy corresponds to the number of paths that have an irreducible interaction in a multi-slit experiment. Given our oracle model, we show that if a classical computer requires at least n queries to solve a learning problem, then the corresponding lower bound in theories lying at the kth level of Sorkin's hierarchy is n/k. Hence, lower bounds on the number of queries to a quantum oracle needed to solve certain problems are not optimal in the space of all generalised probabilistic theories, although it is not yet known whether the optimal bounds are achievable in general. Hence searches for higher-order interference are not only foundationally motivated, but constitute a search for a computational resource beyond that offered by quantum computation.Comment: 17+7 pages. Comments Welcome. Published in special issue "Foundational Aspects of Quantum Information" in Foundations of Physic

    Time-Aware Probabilistic Knowledge Graphs

    Get PDF
    The emergence of open information extraction as a tool for constructing and expanding knowledge graphs has aided the growth of temporal data, for instance, YAGO, NELL and Wikidata. While YAGO and Wikidata maintain the valid time of facts, NELL records the time point at which a fact is retrieved from some Web corpora. Collectively, these knowledge graphs (KG) store facts extracted from Wikipedia and other sources. Due to the imprecise nature of the extraction tools that are used to build and expand KG, such as NELL, the facts in the KG are weighted (a confidence value representing the correctness of a fact). Additionally, NELL can be considered as a transaction time KG because every fact is associated with extraction date. On the other hand, YAGO and Wikidata use the valid time model because they maintain facts together with their validity time (temporal scope). In this paper, we propose a bitemporal model (that combines transaction and valid time models) for maintaining and querying bitemporal probabilistic knowledge graphs. We study coalescing and scalability of marginal and MAP inference. Moreover, we show that complexity of reasoning tasks in atemporal probabilistic KG carry over to the bitemporal setting. Finally, we report our evaluation results of the proposed model

    Conspiracies Between Learning Algorithms, Circuit Lower Bounds, and Pseudorandomness

    Get PDF
    We prove several results giving new and stronger connections between learning theory, circuit complexity and pseudorandomness. Let C be any typical class of Boolean circuits, and C[s(n)] denote n-variable C-circuits of size <= s(n). We show: Learning Speedups: If C[s(n)] admits a randomized weak learning algorithm under the uniform distribution with membership queries that runs in time 2^n/n^{omega(1)}, then for every k >= 1 and epsilon > 0 the class C[n^k] can be learned to high accuracy in time O(2^{n^epsilon}). There is epsilon > 0 such that C[2^{n^{epsilon}}] can be learned in time 2^n/n^{omega(1)} if and only if C[poly(n)] can be learned in time 2^{(log(n))^{O(1)}}. Equivalences between Learning Models: We use learning speedups to obtain equivalences between various randomized learning and compression models, including sub-exponential time learning with membership queries, sub-exponential time learning with membership and equivalence queries, probabilistic function compression and probabilistic average-case function compression. A Dichotomy between Learnability and Pseudorandomness: In the non-uniform setting, there is non-trivial learning for C[poly(n)] if and only if there are no exponentially secure pseudorandom functions computable in C[poly(n)]. Lower Bounds from Nontrivial Learning: If for each k >= 1, (depth-d)-C[n^k] admits a randomized weak learning algorithm with membership queries under the uniform distribution that runs in time 2^n/n^{omega(1)}, then for each k >= 1, BPE is not contained in (depth-d)-C[n^k]. If for some epsilon > 0 there are P-natural proofs useful against C[2^{n^{epsilon}}], then ZPEXP is not contained in C[poly(n)]. Karp-Lipton Theorems for Probabilistic Classes: If there is a k > 0 such that BPE is contained in i.o.Circuit[n^k], then BPEXP is contained in i.o.EXP/O(log(n)). If ZPEXP is contained in i.o.Circuit[2^{n/3}], then ZPEXP is contained in i.o.ESUBEXP. Hardness Results for MCSP: All functions in non-uniform NC^1 reduce to the Minimum Circuit Size Problem via truth-table reductions computable by TC^0 circuits. In particular, if MCSP is in TC^0 then NC^1 = TC^0

    Conspiracies between learning algorithms, circuit lower bounds, and pseudorandomness

    Get PDF
    We prove several results giving new and stronger connections between learning theory, circuit complexity and pseudorandomness. Let C be any typical class of Boolean circuits, and C[s(n)] denote n-variable C-circuits of size ≤ s(n). We show: Learning Speedups. If C[poly(n)] admits a randomized weak learning algorithm under the uniform distribution with membership queries that runs in time 2n/nω(1), then for every k ≥ 1 and ε > 0 the class C[n k ] can be learned to high accuracy in time O(2n ε ). There is ε > 0 such that C[2n ε ] can be learned in time 2n/nω(1) if and only if C[poly(n)] can be learned in time 2(log n) O(1) . Equivalences between Learning Models. We use learning speedups to obtain equivalences between various randomized learning and compression models, including sub-exponential time learning with membership queries, sub-exponential time learning with membership and equivalence queries, probabilistic function compression and probabilistic average-case function compression. A Dichotomy between Learnability and Pseudorandomness. In the non-uniform setting, there is non-trivial learning for C[poly(n)] if and only if there are no exponentially secure pseudorandom functions computable in C[poly(n)]. Lower Bounds from Nontrivial Learning. If for each k ≥ 1, (depth-d)-C[n k ] admits a randomized weak learning algorithm with membership queries under the uniform distribution that runs in time 2n/nω(1), then for each k ≥ 1, BPE * (depth-d)-C[n k ]. If for some ε > 0 there are P-natural proofs useful against C[2n ε ], then ZPEXP * C[poly(n)]. Karp-Lipton Theorems for Probabilistic Classes. If there is a k > 0 such that BPE ⊆ i.o.Circuit[n k ], then BPEXP ⊆ i.o.EXP/O(log n). If ZPEXP ⊆ i.o.Circuit[2n/3 ], then ZPEXP ⊆ i.o.ESUBEXP. Hardness Results for MCSP. All functions in non-uniform NC1 reduce to the Minimum Circuit Size Problem via truth-table reductions computable by TC0 circuits. In particular, if MCSP ∈ TC0 then NC1 = TC0
    • …
    corecore