31,484 research outputs found

    Polynomial Time corresponds to Solutions of Polynomial Ordinary Differential Equations of Polynomial Length

    Full text link
    We provide an implicit characterization of polynomial time computation in terms of ordinary differential equations: we characterize the class PTIME\operatorname{PTIME} of languages computable in polynomial time in terms of differential equations with polynomial right-hand side. This result gives a purely continuous (time and space) elegant and simple characterization of PTIME\operatorname{PTIME}. This is the first time such classes are characterized using only ordinary differential equations. Our characterization extends to functions computable in polynomial time over the reals in the sense of computable analysis. This extends to deterministic complexity classes above polynomial time. This may provide a new perspective on classical complexity, by giving a way to define complexity classes, like PTIME\operatorname{PTIME}, in a very simple way, without any reference to a notion of (discrete) machine. This may also provide ways to state classical questions about computational complexity via ordinary differential equations, i.e.~by using the framework of analysis

    Polynomial time corresponds to solutions of polynomial ordinary differential equations of polynomial length

    Get PDF
    The outcomes of this article are twofold. Implicit complexity. We provide an implicit characterization of polynomial time computation in terms of ordinary differential equations: we characterize the class P of languages computable in polynomial time in terms of differential equations with polynomial right-hand side. This result gives a purely continuous elegant and simple characterization of P. We believe it is the first time complexity classes are characterized using only ordinary differential equations. Our characterization extends to functions computable in polynomial time over the reals in the sense of Computable Analysis. Our results may provide a new perspective on classical complexity, by giving a way to define complexity classes, like P, in a very simple way, without any reference to a notion of (discrete) machine. This may also provide ways to state classical questions about computational complexity via ordinary differential equations. Continuous-Time Models of Computation. Our results can also be interpreted in terms of analog computers or analog models of computation: As a side effect, we get that the 1941 General Purpose Analog Computer (GPAC) of Claude Shannon is provably equivalent to Turing machines both in terms of computability and complexity, a fact that has never been established before. This result provides arguments in favour of a generalised form of the Church-Turing Hypothesis, which states that any physically realistic (macroscopic) computer is equivalent to Turing machines both in terms of computability and complexity

    Polynomial Time Corresponds to Solutions of Polynomial Ordinary Differential Equations of Polynomial Length: The General Purpose Analog Computer and Computable Analysis Are Two Efficiently Equivalent Models of Computations

    Get PDF
    The outcomes of this paper are twofold. Implicit complexity. We provide an implicit characterization of polynomial time computation in terms of ordinary differential equations: we characterize the class P of languages computable in polynomial time in terms of differential equations with polynomial right-hand side. This result gives a purely continuous (time and space) elegant and simple characterization of P. We believe it is the first time such classes are characterized using only ordinary differential equations. Our characterization extends to functions computable in polynomial time over the reals in the sense of computable analysis. Our results may provide a new perspective on classical complexity, by giving a way to define complexity classes, like P, in a very simple way, without any reference to a notion of (discrete) machine. This may also provide ways to state classical questions about computational complexity via ordinary differential equations. Continuous-Time Models of Computation. Our results can also be interpreted in terms of analog computers or analog model of computation: As a side effect, we get that the 1941 General Purpose Analog Computer (GPAC) of Claude Shannon is provably equivalent to Turing machines both at the computability and complexity level, a fact that has never been established before. This result provides arguments in favour of a generalised form of the Church-Turing Hypothesis, which states that any physically realistic (macroscopic) computer is equivalent to Turing machines both at a computability and at a computational complexity level

    On the complexity of solving ordinary differential equations in terms of Puiseux series

    Full text link
    We prove that the binary complexity of solving ordinary polynomial differential equations in terms of Puiseux series is single exponential in the number of terms in the series. Such a bound was given by Grigoriev [10] for Riccatti differential polynomials associated to ordinary linear differential operators. In this paper, we get the same bound for arbitrary differential polynomials. The algorithm is based on a differential version of the Newton-Puiseux procedure for algebraic equations

    Exact series solution to the two flavor neutrino oscillation problem in matter

    Full text link
    In this paper, we present a real non-linear differential equation for the two flavor neutrino oscillation problem in matter with an arbitrary density profile. We also present an exact series solution to this non-linear differential equation. In addition, we investigate numerically the convergence of this solution for different matter density profiles such as constant and linear profiles as well as the Preliminary Reference Earth Model describing the Earth's matter density profile. Finally, we discuss other methods used for solving the neutrino flavor evolution problem.Comment: 18 pages, 5 figures, RevTeX4. Final version to be published in Journal of Mathematical Physic

    Oscillation of linear ordinary differential equations: on a theorem by A. Grigoriev

    Full text link
    We give a simplified proof and an improvement of a recent theorem by A. Grigoriev, placing an upper bound for the number of roots of linear combinations of solutions to systems of linear equations with polynomial or rational coefficients.Comment: 16 page

    A Universal Ordinary Differential Equation

    Full text link
    An astonishing fact was established by Lee A. Rubel (1981): there exists a fixed non-trivial fourth-order polynomial differential algebraic equation (DAE) such that for any positive continuous function φ\varphi on the reals, and for any positive continuous function ϵ(t)\epsilon(t), it has a C\mathcal{C}^\infty solution with y(t)φ(t)<ϵ(t)| y(t) - \varphi(t) | < \epsilon(t) for all tt. Lee A. Rubel provided an explicit example of such a polynomial DAE. Other examples of universal DAE have later been proposed by other authors. However, Rubel's DAE \emph{never} has a unique solution, even with a finite number of conditions of the form y(ki)(ai)=biy^{(k_i)}(a_i)=b_i. The question whether one can require the solution that approximates φ\varphi to be the unique solution for a given initial data is a well known open problem [Rubel 1981, page 2], [Boshernitzan 1986, Conjecture 6.2]. In this article, we solve it and show that Rubel's statement holds for polynomial ordinary differential equations (ODEs), and since polynomial ODEs have a unique solution given an initial data, this positively answers Rubel's open problem. More precisely, we show that there exists a \textbf{fixed} polynomial ODE such that for any φ\varphi and ϵ(t)\epsilon(t) there exists some initial condition that yields a solution that is ϵ\epsilon-close to φ\varphi at all times. In particular, the solution to the ODE is necessarily analytic, and we show that the initial condition is computable from the target function and error function
    corecore