2,058 research outputs found

    Sub-exponential Approximation Schemes for CSPs: From Dense to Almost Sparse

    Get PDF
    It has long been known, since the classical work of (Arora, Karger, Karpinski, JCSS\u2799), that MAX-CUT admits a PTAS on dense graphs, and more generally, MAX-k-CSP admits a PTAS on "dense" instances with Omega(n^k) constraints. In this paper we extend and generalize their exhaustive sampling approach, presenting a framework for (1-epsilon)-approximating any MAX-k-CSP problem in sub-exponential time while significantly relaxing the denseness requirement on the input instance. Specifically, we prove that for any constants delta in (0, 1] and epsilon > 0, we can approximate MAX-k-CSP problems with Omega(n^{k-1+delta}) constraints within a factor of (1-epsilon) in time 2^{O(n^{1-delta}*ln(n) / epsilon^3)}. The framework is quite general and includes classical optimization problems, such as MAX-CUT, MAX-DICUT, MAX-k-SAT, and (with a slight extension) k-DENSEST SUBGRAPH, as special cases. For MAX-CUT in particular (where k=2), it gives an approximation scheme that runs in time sub-exponential in n even for "almost-sparse" instances (graphs with n^{1+delta} edges). We prove that our results are essentially best possible, assuming the ETH. First, the density requirement cannot be relaxed further: there exists a constant r 0, MAX-k-SAT instances with O(n^{k-1}) clauses cannot be approximated within a ratio better than r in time 2^{O(n^{1-delta})}. Second, the running time of our algorithm is almost tight for all densities. Even for MAX-CUT there exists r delta >0, MAX-CUT instances with n^{1+delta} edges cannot be approximated within a ratio better than r in time 2^{n^{1-delta\u27}}

    Product-state approximations to quantum ground states

    Get PDF
    The local Hamiltonian problem consists of estimating the ground-state energy (given by the minimum eigenvalue) of a local quantum Hamiltonian. It can be considered as a quantum generalization of constraint satisfaction problems (CSPs) and has a key role in quantum complexity theory, being the first and most natural QMA-complete problem known. An interesting regime for the local Hamiltonian problem is that of extensive error, where one is interested in estimating the mean ground-state energy to constant accuracy. The problem is NP-hard by the PCP theorem, but whether it is QMA-hard is an important open question in quantum complexity theory. A positive solution would represent a quantum analogue of the PCP theorem. A key feature that distinguishes quantum Hamiltonians from classical CSPs is that the solutions may involve complicated entangled states. In this paper, we demonstrate several large classes of Hamiltonians for which product (i.e. unentangled) states can approximate the ground state energy to within a small extensive error. First, we show the mere existence of a good product-state approximation for the ground-state energy of 2-local Hamiltonians with one of more of the following properties: (1) super-constant degree, (2) small expansion, or (3) a ground state with sublinear entanglement with respect to some partition into small pieces. The approximation based on degree is a new and surprising difference between quantum Hamiltonians and classical CSPs, since in the classical setting, higher degree is usually associated with harder CSPs. The approximation based on expansion is not new, but the approximation based on low entanglement was previously known only in the regime where the entanglement was close to zero. Since the existence of a low-energy product state can be checked in NP, this implies that any Hamiltonian used for a quantum PCP theorem should have: (1) constant degree, (2) constant expansion, (3) a ``volume law'' for entanglement with respect to any partition into small parts. Second, we show that in several cases, good product-state approximations not only exist, but can be found in deterministic polynomial time: (1) 2-local Hamiltonians on any planar graph, solving an open problem of Bansal, Bravyi, and Terhal, (2) dense k-local Hamiltonians for any constant k, solving an open problem of Gharibian and Kempe, and (3) 2-local Hamiltonians on graphs with low threshold rank, via a quantum generalization of a recent result of Barak, Raghavendra and Steurer. Our work involves two new tools which may be of independent interest. First, we prove a new quantum version of the de Finetti theorem which does not require the usual assumption of symmetry. Second, we describe a way to analyze the application of the Lasserre/Parrilo SDP hierarchy to local quantum Hamiltonians

    A Birthday Repetition Theorem and Complexity of Approximating Dense CSPs

    Get PDF
    A (k×l)(k \times l)-birthday repetition Gk×l\mathcal{G}^{k \times l} of a two-prover game G\mathcal{G} is a game in which the two provers are sent random sets of questions from G\mathcal{G} of sizes kk and ll respectively. These two sets are sampled independently uniformly among all sets of questions of those particular sizes. We prove the following birthday repetition theorem: when G\mathcal{G} satisfies some mild conditions, val(Gk×l)val(\mathcal{G}^{k \times l}) decreases exponentially in Ω(kl/n)\Omega(kl/n) where nn is the total number of questions. Our result positively resolves an open question posted by Aaronson, Impagliazzo and Moshkovitz (CCC 2014). As an application of our birthday repetition theorem, we obtain new fine-grained hardness of approximation results for dense CSPs. Specifically, we establish a tight trade-off between running time and approximation ratio for dense CSPs by showing conditional lower bounds, integrality gaps and approximation algorithms. In particular, for any sufficiently large ii and for every k≥2k \geq 2, we show the following results: - We exhibit an O(q1/i)O(q^{1/i})-approximation algorithm for dense Max kk-CSPs with alphabet size qq via Ok(i)O_k(i)-level of Sherali-Adams relaxation. - Through our birthday repetition theorem, we obtain an integrality gap of q1/iq^{1/i} for Ω~k(i)\tilde\Omega_k(i)-level Lasserre relaxation for fully-dense Max kk-CSP. - Assuming that there is a constant ϵ>0\epsilon > 0 such that Max 3SAT cannot be approximated to within (1−ϵ)(1-\epsilon) of the optimal in sub-exponential time, our birthday repetition theorem implies that any algorithm that approximates fully-dense Max kk-CSP to within a q1/iq^{1/i} factor takes (nq)Ω~k(i)(nq)^{\tilde \Omega_k(i)} time, almost tightly matching the algorithmic result based on Sherali-Adams relaxation.Comment: 45 page

    The algebraic structure of the densification and the sparsification tasks for CSPs

    Full text link
    The tractability of certain CSPs for dense or sparse instances is known from the 90s. Recently, the densification and the sparsification of CSPs were formulated as computational tasks and the systematical study of their computational complexity was initiated. We approach this problem by introducing the densification operator, i.e. the closure operator that, given an instance of a CSP, outputs all constraints that are satisfied by all of its solutions. According to the Galois theory of closure operators, any such operator is related to a certain implicational system (or, a functional dependency) Σ\Sigma. We are specifically interested in those classes of fixed-template CSPs, parameterized by constraint languages Γ\Gamma, for which the size of an implicational system Σ\Sigma is a polynomial in the number of variables nn. We show that in the Boolean case, Σ\Sigma is of polynomial size if and only if Γ\Gamma is of bounded width. For such languages, Σ\Sigma can be computed in log-space or in a logarithmic time with a polynomial number of processors. Given an implicational system Σ\Sigma, the densification task is equivalent to the computation of the closure of input constraints. The sparsification task is equivalent to the computation of the minimal key. This leads to O(poly(n)⋅N2){\mathcal O}({\rm poly}(n)\cdot N^2)-algorithm for the sparsification task where NN is the number of non-redundant sparsifications of an original CSP. Finally, we give a complete classification of constraint languages over the Boolean domain for which the densification problem is tractable

    Exploiting Dense Structures in Parameterized Complexity

    Get PDF
    Over the past few decades, the study of dense structures from the perspective of approximation algorithms has become a wide area of research. However, from the viewpoint of parameterized algorithm, this area is largely unexplored. In particular, properties of random samples have been successfully deployed to design approximation schemes for a number of fundamental problems on dense structures [Arora et al. FOCS 1995, Goldreich et al. FOCS 1996, Giotis and Guruswami SODA 2006, Karpinksi and Schudy STOC 2009]. In this paper, we fill this gap, and harness the power of random samples as well as structure theory to design kernelization as well as parameterized algorithms on dense structures. In particular, we obtain linear vertex kernels for Edge-Disjoint Paths, Edge Odd Cycle Transversal, Minimum Bisection, d-Way Cut, Multiway Cut and Multicut on everywhere dense graphs. In fact, these kernels are obtained by designing a polynomial-time algorithm when the corresponding parameter is at most ?(n). Additionally, we obtain a cubic kernel for Vertex-Disjoint Paths on everywhere dense graphs. In addition to kernelization results, we obtain randomized subexponential-time parameterized algorithms for Edge Odd Cycle Transversal, Minimum Bisection, and d-Way Cut. Finally, we show how all of our results (as well as EPASes for these problems) can be de-randomized

    PTAS for Sparse General-Valued CSPs

    Full text link
    We study polynomial-time approximation schemes (PTASes) for constraint satisfaction problems (CSPs) such as Maximum Independent Set or Minimum Vertex Cover on sparse graph classes. Baker's approach gives a PTAS on planar graphs, excluded-minor classes, and beyond. For Max-CSPs, and even more generally, maximisation finite-valued CSPs (where constraints are arbitrary non-negative functions), Romero, Wrochna, and \v{Z}ivn\'y [SODA'21] showed that the Sherali-Adams LP relaxation gives a simple PTAS for all fractionally-treewidth-fragile classes, which is the most general "sparsity" condition for which a PTAS is known. We extend these results to general-valued CSPs, which include "crisp" (or "strict") constraints that have to be satisfied by every feasible assignment. The only condition on the crisp constraints is that their domain contains an element which is at least as feasible as all the others (but possibly less valuable). For minimisation general-valued CSPs with crisp constraints, we present a PTAS for all Baker graph classes -- a definition by Dvo\v{r}\'ak [SODA'20] which encompasses all classes where Baker's technique is known to work, except possibly for fractionally-treewidth-fragile classes. While this is standard for problems satisfying a certain monotonicity condition on crisp constraints, we show this can be relaxed to diagonalisability -- a property of relational structures connected to logics, statistical physics, and random CSPs
    • …
    corecore