9,174 research outputs found

    Atomic norm denoising with applications to line spectral estimation

    Get PDF
    Motivated by recent work on atomic norms in inverse problems, we propose a new approach to line spectral estimation that provides theoretical guarantees for the mean-squared-error (MSE) performance in the presence of noise and without knowledge of the model order. We propose an abstract theory of denoising with atomic norms and specialize this theory to provide a convex optimization problem for estimating the frequencies and phases of a mixture of complex exponentials. We show that the associated convex optimization problem can be solved in polynomial time via semidefinite programming (SDP). We also show that the SDP can be approximated by an l1-regularized least-squares problem that achieves nearly the same error rate as the SDP but can scale to much larger problems. We compare both SDP and l1-based approaches with classical line spectral analysis methods and demonstrate that the SDP outperforms the l1 optimization which outperforms MUSIC, Cadzow's, and Matrix Pencil approaches in terms of MSE over a wide range of signal-to-noise ratios.Comment: 27 pages, 10 figures. A preliminary version of this work appeared in the Proceedings of the 49th Annual Allerton Conference in September 2011. Numerous numerical experiments added to this version in accordance with suggestions by anonymous reviewer

    Graph Signal Processing: Overview, Challenges and Applications

    Full text link
    Research in Graph Signal Processing (GSP) aims to develop tools for processing data defined on irregular graph domains. In this paper we first provide an overview of core ideas in GSP and their connection to conventional digital signal processing. We then summarize recent developments in developing basic GSP tools, including methods for sampling, filtering or graph learning. Next, we review progress in several application areas using GSP, including processing and analysis of sensor network data, biological data, and applications to image processing and machine learning. We finish by providing a brief historical perspective to highlight how concepts recently developed in GSP build on top of prior research in other areas.Comment: To appear, Proceedings of the IEE

    Super-resolution Line Spectrum Estimation with Block Priors

    Full text link
    We address the problem of super-resolution line spectrum estimation of an undersampled signal with block prior information. The component frequencies of the signal are assumed to take arbitrary continuous values in known frequency blocks. We formulate a general semidefinite program to recover these continuous-valued frequencies using theories of positive trigonometric polynomials. The proposed semidefinite program achieves super-resolution frequency recovery by taking advantage of known structures of frequency blocks. Numerical experiments show great performance enhancements using our method.Comment: 7 pages, double colum

    Compressive Parameter Estimation for Sparse Translation-Invariant Signals Using Polar Interpolation

    Get PDF
    We propose new compressive parameter estimation algorithms that make use of polar interpolation to improve the estimator precision. Our work extends previous approaches involving polar interpolation for compressive parameter estimation in two aspects: (i) we extend the formulation from real non-negative amplitude parameters to arbitrary complex ones, and (ii) we allow for mismatch between the manifold described by the parameters and its polar approximation. To quantify the improvements afforded by the proposed extensions, we evaluate six algorithms for estimation of parameters in sparse translation-invariant signals, exemplified with the time delay estimation problem. The evaluation is based on three performance metrics: estimator precision, sampling rate and computational complexity. We use compressive sensing with all the algorithms to lower the necessary sampling rate and show that it is still possible to attain good estimation precision and keep the computational complexity low. Our numerical experiments show that the proposed algorithms outperform existing approaches that either leverage polynomial interpolation or are based on a conversion to a frequency-estimation problem followed by a super-resolution algorithm. The algorithms studied here provide various tradeoffs between computational complexity, estimation precision, and necessary sampling rate. The work shows that compressive sensing for the class of sparse translation-invariant signals allows for a decrease in sampling rate and that the use of polar interpolation increases the estimation precision.Comment: 13 pages, 5 figures, to appear in IEEE Transactions on Signal Processing; minor edits and correction

    The influence of random element displacement on DOA estimates obtained with (Khatri-Rao-)root-MUSIC

    Get PDF
    Although a wide range of direction of arrival (DOA) estimation algorithms has been described for a diverse range of array configurations, no specific stochastic analysis framework has been established to assess the probability density function of the error on DOA estimates due to random errors in the array geometry. Therefore, we propose a stochastic collocation method that relies on a generalized polynomial chaos expansion to connect the statistical distribution of random position errors to the resulting distribution of the DOA estimates. We apply this technique to the conventional root-MUSIC and the Khatri-Rao-root-MUSIC methods. According to Monte-Carlo simulations, this novel approach yields a speedup by a factor of more than 100 in terms of CPU-time for a one-dimensional case and by a factor of 56 for a two-dimensional case

    Sampling of graph signals via randomized local aggregations

    Get PDF
    Sampling of signals defined over the nodes of a graph is one of the crucial problems in graph signal processing. While in classical signal processing sampling is a well defined operation, when we consider a graph signal many new challenges arise and defining an efficient sampling strategy is not straightforward. Recently, several works have addressed this problem. The most common techniques select a subset of nodes to reconstruct the entire signal. However, such methods often require the knowledge of the signal support and the computation of the sparsity basis before sampling. Instead, in this paper we propose a new approach to this issue. We introduce a novel technique that combines localized sampling with compressed sensing. We first choose a subset of nodes and then, for each node of the subset, we compute random linear combinations of signal coefficients localized at the node itself and its neighborhood. The proposed method provides theoretical guarantees in terms of reconstruction and stability to noise for any graph and any orthonormal basis, even when the support is not known.Comment: IEEE Transactions on Signal and Information Processing over Networks, 201

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    Review of analytical instruments for EEG analysis

    Full text link
    Since it was first used in 1926, EEG has been one of the most useful instruments of neuroscience. In order to start using EEG data we need not only EEG apparatus, but also some analytical tools and skills to understand what our data mean. This article describes several classical analytical tools and also new one which appeared only several years ago. We hope it will be useful for those researchers who have only started working in the field of cognitive EEG
    • …
    corecore