158 research outputs found

    A Continuation Method for Nash Equilibria in Structured Games

    Full text link
    Structured game representations have recently attracted interest as models for multi-agent artificial intelligence scenarios, with rational behavior most commonly characterized by Nash equilibria. This paper presents efficient, exact algorithms for computing Nash equilibria in structured game representations, including both graphical games and multi-agent influence diagrams (MAIDs). The algorithms are derived from a continuation method for normal-form and extensive-form games due to Govindan and Wilson; they follow a trajectory through a space of perturbed games and their equilibria, exploiting game structure through fast computation of the Jacobian of the payoff function. They are theoretically guaranteed to find at least one equilibrium of the game, and may find more. Our approach provides the first efficient algorithm for computing exact equilibria in graphical games with arbitrary topology, and the first algorithm to exploit fine-grained structural properties of MAIDs. Experimental results are presented demonstrating the effectiveness of the algorithms and comparing them to predecessors. The running time of the graphical game algorithm is similar to, and often better than, the running time of previous approximate algorithms. The algorithm for MAIDs can effectively solve games that are much larger than those solvable by previous methods

    Nash equilibria, gale strings, and perfect matchings

    Get PDF
    This thesis concerns the problem 2-NASH of ļ¬nding a Nash equilibrium of a bimatrix game, for the special class of so-called ā€œhard-to-solveā€ bimatrix games. The term ā€œhardto-solveā€ relates to the exponential running time of the famous and often used Lemkeā€“ Howson algorithm for this class of games. The games are constructed with the help of dual cyclic polytopes, where the algorithm can be expressed combinatorially via labeled bitstrings deļ¬ned by the ā€œGale evenness conditionā€ that characterise the vertices of these polytopes. We deļ¬ne the combinatorial problem ā€œAnother completely labeled Gale stringā€ whose solutions deļ¬ne the Nash equilibria of any game deļ¬ned by cyclic polytopes, including the games where the Lemkeā€“Howson algorithm takes exponential time. We show that ā€œAnother completely labeled Gale stringā€ is solvable in polynomial time by a reduction to the ā€œPerfect matchingā€ problem in Euler graphs. We adapt the Lemkeā€“Howson algorithm to pivot from one perfect matching to another and show that again for a certain class of graphs this leads to exponential behaviour. Furthermore, we prove that completely labeled Gale strings and perfect matchings in Euler graphs come in pairs and that the Lemkeā€“Howson algorithm connects two strings or matchings of opposite signs. The equivalence between Nash Equilibria of bimatrix games derived from cyclic polytopes, completely labeled Gale strings, and perfect matchings in Euler Graphs implies that counting Nash equilibria is #P-complete. Although one Nash equilibrium can be computed in polynomial time, we have not succeeded in ļ¬nding an algorithm that computes a Nash equilibrium of opposite sign. However, we solve this problem for certain special cases, for example planar graphs. We illustrate the difļ¬culties concerning a general polynomial-time algorithm for this problem by means of negative results that demonstrate why a number of approaches towards such an algorithm are unlikely to be successful

    Randomized approximation algorithms : facility location, phylogenetic networks, Nash equilibria

    Get PDF
    Despite a great effort, researchers are unable to find efficient algorithms for a number of natural computational problems. Typically, it is possible to emphasize the hardness of such problems by proving that they are at least as hard as a number of other problems. In the language of computational complexity it means proving that the problem is complete for a certain class of problems. For optimization problems, we may consider to relax the requirement of the outcome to be optimal and accept an approximate (i.e., close to optimal) solution. For many of the problems that are hard to solve optimally, it is actually possible to efficiently find close to optimal solutions. In this thesis, we study algorithms for computing such approximate solutions

    New Perspectives on Games and Interaction

    Get PDF
    This volume is a collection of papers presented at the 2007 colloquium on new perspectives on games and interaction at the Royal Dutch Academy of Sciences in Amsterdam. The purpose of the colloquium was to clarify the uses of the concepts of game theory, and to identify promising new directions. This important collection testifies to the growing importance of game theory as a tool to capture the concepts of strategy, interaction, argumentation, communication, cooperation and competition. Also, it provides evidence for the richness of game theory and for its impressive and growing application
    • ā€¦
    corecore