3,067 research outputs found

    Arithmetic Circuits and the Hadamard Product of Polynomials

    Get PDF
    Motivated by the Hadamard product of matrices we define the Hadamard product of multivariate polynomials and study its arithmetic circuit and branching program complexity. We also give applications and connections to polynomial identity testing. Our main results are the following. 1. We show that noncommutative polynomial identity testing for algebraic branching programs over rationals is complete for the logspace counting class \ceql, and over fields of characteristic pp the problem is in \ModpL/\Poly. 2.We show an exponential lower bound for expressing the Raz-Yehudayoff polynomial as the Hadamard product of two monotone multilinear polynomials. In contrast the Permanent can be expressed as the Hadamard product of two monotone multilinear formulas of quadratic size.Comment: 20 page

    The set of realizations of a max-plus linear sequence is semi-polyhedral

    Get PDF
    We show that the set of realizations of a given dimension of a max-plus linear sequence is a finite union of polyhedral sets, which can be computed from any realization of the sequence. This yields an (expensive) algorithm to solve the max-plus minimal realization problem. These results are derived from general facts on rational expressions over idempotent commutative semirings: we show more generally that the set of values of the coefficients of a commutative rational expression in one letter that yield a given max-plus linear sequence is a semi-algebraic set in the max-plus sense. In particular, it is a finite union of polyhedral sets

    Piecewise testable tree languages

    Get PDF
    This paper presents a decidable characterization of tree languages that can be defined by a boolean combination of Sigma_1 sentences. This is a tree extension of the Simon theorem, which says that a string language can be defined by a boolean combination of Sigma_1 sentences if and only if its syntactic monoid is J-trivial

    Silent Transitions in Automata with Storage

    Full text link
    We consider the computational power of silent transitions in one-way automata with storage. Specifically, we ask which storage mechanisms admit a transformation of a given automaton into one that accepts the same language and reads at least one input symbol in each step. We study this question using the model of valence automata. Here, a finite automaton is equipped with a storage mechanism that is given by a monoid. This work presents generalizations of known results on silent transitions. For two classes of monoids, it provides characterizations of those monoids that allow the removal of \lambda-transitions. Both classes are defined by graph products of copies of the bicyclic monoid and the group of integers. The first class contains pushdown storages as well as the blind counters while the second class contains the blind and the partially blind counters.Comment: 32 pages, submitte
    • …
    corecore