633 research outputs found

    The cost of continuity: performance of iterative solvers on isogeometric finite elements

    Full text link
    In this paper we study how the use of a more continuous set of basis functions affects the cost of solving systems of linear equations resulting from a discretized Galerkin weak form. Specifically, we compare performance of linear solvers when discretizing using C0C^0 B-splines, which span traditional finite element spaces, and Cp−1C^{p-1} B-splines, which represent maximum continuity. We provide theoretical estimates for the increase in cost of the matrix-vector product as well as for the construction and application of black-box preconditioners. We accompany these estimates with numerical results and study their sensitivity to various grid parameters such as element size hh and polynomial order of approximation pp. Finally, we present timing results for a range of preconditioning options for the Laplace problem. We conclude that the matrix-vector product operation is at most \slfrac{33p^2}{8} times more expensive for the more continuous space, although for moderately low pp, this number is significantly reduced. Moreover, if static condensation is not employed, this number further reduces to at most a value of 8, even for high pp. Preconditioning options can be up to p3p^3 times more expensive to setup, although this difference significantly decreases for some popular preconditioners such as Incomplete LU factorization

    Adapting the interior point method for the solution of LPs on serial, coarse grain parallel and massively parallel computers

    Get PDF
    In this paper we describe a unified scheme for implementing an interior point algorithm (IPM) over a range of computer architectures. In the inner iteration of the IPM a search direction is computed using Newton's method. Computationally this involves solving a sparse symmetric positive definite (SSPD) system of equations. The choice of direct and indirect methods for the solution of this system, and the design of data structures to take advantage of serial, coarse grain parallel and massively parallel computer architectures, are considered in detail. We put forward arguments as to why integration of the system within a sparse simplex solver is important and outline how the system is designed to achieve this integration

    Multilevel Preconditioning of Discontinuous-Galerkin Spectral Element Methods, Part I: Geometrically Conforming Meshes

    Get PDF
    This paper is concerned with the design, analysis and implementation of preconditioning concepts for spectral Discontinuous Galerkin discretizations of elliptic boundary value problems. While presently known techniques realize a growth of the condition numbers that is logarithmic in the polynomial degrees when all degrees are equal and quadratic otherwise, our main objective is to realize full robustness with respect to arbitrarily large locally varying polynomial degrees degrees, i.e., under mild grading constraints condition numbers stay uniformly bounded with respect to the mesh size and variable degrees. The conceptual foundation of the envisaged preconditioners is the auxiliary space method. The main conceptual ingredients that will be shown in this framework to yield "optimal" preconditioners in the above sense are Legendre-Gauss-Lobatto grids in connection with certain associated anisotropic nested dyadic grids as well as specially adapted wavelet preconditioners for the resulting low order auxiliary problems. Moreover, the preconditioners have a modular form that facilitates somewhat simplified partial realizations. One of the components can, for instance, be conveniently combined with domain decomposition, at the expense though of a logarithmic growth of condition numbers. Our analysis is complemented by quantitative experimental studies of the main components.Comment: 41 pages, 11 figures; Major revision: rearrangement of the contents for better readability, part on wavelet preconditioner adde

    Segregated Runge–Kutta time integration of convection-stabilized mixed finite element schemes for wall-unresolved LES of incompressible flows

    Get PDF
    In this work, we develop a high-performance numerical framework for the large eddy simulation (LES) of incompressible flows. The spatial discretization of the nonlinear system is carried out using mixed finite element (FE) schemes supplemented with symmetric projection stabilization of the convective term and a penalty term for the divergence constraint. These additional terms introduced at the discrete level have been proved to act as implicit LES models. In order to perform meaningful wall-unresolved simulations, we consider a weak imposition of the boundary conditions using a Nitsche’s-type scheme, where the tangential component penalty term is designed to act as a wall law. Next, segregated Runge–Kutta (SRK) schemes (recently proposed by the authors for laminar flow problems) are applied to the LES simulation of turbulent flows. By the introduction of a penalty term on the trace of the acceleration, these methods exhibit excellent stability properties for both implicit and explicit treatment of the convective terms. SRK schemes are excellent for large-scale simulations, since they reduce the computational cost of the linear system solves by splitting velocity and pressure computations at the time integration level, leading to two uncoupled systems. The pressure system is a Darcy-type problem that can easily be preconditioned using a traditional block-preconditioning scheme that only requires a Poisson solver. At the end, only coercive systems have to be solved, which can be effectively preconditioned by multilevel domain decomposition schemes, which are both optimal and scalable. The framework is applied to the Taylor–Green and turbulent channel flow benchmarks in order to prove the accuracy of the convection-stabilized mixed FEs as LES models and SRK time integrators. The scalability of the preconditioning techniques (in space only) has also been proven for one step of the SRK scheme for the Taylor–Green flow using uniform meshes. Moreover, a turbulent flow around a NACA profile is solved to show the applicability of the proposed algorithms for a realistic problem.Peer ReviewedPostprint (author's final draft

    Scalable domain decomposition methods for finite element approximations of transient and electromagnetic problems

    Get PDF
    The main object of study of this thesis is the development of scalable and robust solvers based on domain decomposition (DD) methods for the linear systems arising from the finite element (FE) discretization of transient and electromagnetic problems. The thesis commences with a theoretical review of the curl-conforming edge (or Nédélec) FEs of the first kind and a comprehensive description of a general implementation strategy for h- and p- adaptive elements of arbitrary order on tetrahedral and hexahedral non-conforming meshes. Then, a novel balancing domain decomposition by constraints (BDDC) preconditioner that is robust for multi-material and/or heterogeneous problems posed in curl-conforming spaces is presented. The new method, in contrast to existent approaches, is based on the definition of the ingredients of the preconditioner according to the physical coefficients of the problem and does not require spectral information. The result is a robust and highly scalable preconditioner that preserves the simplicity of the original BDDC method. When dealing with transient problems, the time direction offers itself an opportunity for further parallelization. Aiming to design scalable space-time solvers, first, parallel-in-time parallel methods for linear and non-linear ordinary differential equations (ODEs) are proposed, based on (non-linear) Schur complement efficient solvers of a multilevel partition of the time interval. Then, these ideas are combined with DD concepts in order to design a two-level preconditioner as an extension to space-time of the BDDC method. The key ingredients for these new methods are defined such that they preserve the time causality, i.e., information only travels from the past to the future. The proposed schemes are weakly scalable in time and space-time, i.e., one can efficiently exploit increasing computational resources to solve more time steps in (approximately) the same time-to-solution. All the developments presented herein are motivated by the driving application of the thesis, the 3D simulation of the low-frequency electromagnetic response of High Temperature Superconductors (HTS). Throughout the document, an exhaustive set of numerical experiments, which includes the simulation of a realistic 3D HTS problem, is performed in order to validate the suitability and assess the parallel performance of the High Performance Computing (HPC) implementation of the proposed algorithms.L’objecte principal d’estudi d’aquesta tesi és el desenvolupament de solucionadors escalables i robustos basats en mètodes de descomposició de dominis (DD) per a sistemes lineals que sorgeixen en la discretització mitjançant elements finits (FE) de problemes transitoris i electromagnètics. La tesi comença amb una revisió teòrica dels FE d’eix (o de Nédélec) de la primera família i una descripció exhaustiva d’una estratègia d’implementació general per a elements h- i p-adaptatius d’ordre arbitrari en malles de tetraedres i hexaedres noconformes. Llavors, es presenta un nou precondicionador de descomposició de dominis balancejats per restricció (BDDC) que és robust per a problemes amb múltiples materials i/o heterogenis definits en espais curl-conformes. El nou mètode, en contrast amb els enfocaments existents, està basat en la definició dels ingredients del precondicionador segons els coeficients físics del problema i no requereix informació espectral. El resultat és un precondicionador robust i escalable que preserva la simplicitat del mètode original BDDC. Quan tractem amb problemes transitoris, la direcció temporal ofereix ella mateixa l’oportunitat de seguir explotant paral·lelisme. Amb l’objectiu de dissenyar precondicionadors en espai-temps, primer, proposem solucionadors paral·lels en temps per equacions diferencials lineals i no-lineals, basats en un solucionador eficient del complement de Schur d’una partició multinivell de l’interval de temps. Seguidament, aquestes idees es combinen amb conceptes de DD amb l’objectiu de dissenyar precondicionadors com a extensió a espai-temps dels mètodes de BDDC. Els ingredients clau d’aquests nous mètodes es defineixen de tal manera que preserven la causalitat del temps, on la informació només viatja de temps passats a temps futurs. Els esquemes proposats són dèbilment escalables en temps i en espai-temps, és a dir, es poden explotar eficientment recursos computacionals creixents per resoldre més passos de temps en (aproximadament) el mateix temps transcorregut de càlcul. Tots els desenvolupaments presentats aquí són motivats pel problema d’aplicació de la tesi, la simulació de la resposta electromagnètica de baixa freqüència dels superconductors d’alta temperatura (HTS) en 3D. Al llarg del document, es realitza un conjunt exhaustiu d’experiments numèrics, els quals inclouen la simulació d’un problema de HTS realista en 3D, per validar la idoneïtat i el rendiment paral·lel de la implementació per a computació d’alt rendiment dels algorismes proposatsPostprint (published version
    • …
    corecore