1,101 research outputs found

    Theoretical insights into the optimization landscape of over-parameterized shallow neural networks

    Full text link
    In this paper we study the problem of learning a shallow artificial neural network that best fits a training data set. We study this problem in the over-parameterized regime where the number of observations are fewer than the number of parameters in the model. We show that with quadratic activations the optimization landscape of training such shallow neural networks has certain favorable characteristics that allow globally optimal models to be found efficiently using a variety of local search heuristics. This result holds for an arbitrary training data of input/output pairs. For differentiable activation functions we also show that gradient descent, when suitably initialized, converges at a linear rate to a globally optimal model. This result focuses on a realizable model where the inputs are chosen i.i.d. from a Gaussian distribution and the labels are generated according to planted weight coefficients.Comment: Section 3 on numerical experiments is added. Theorems 2.1 and 2.2 are improved to apply to almost all input data (not just Gaussian inputs). Related work section is expanded. The paper is accepted for publication in IEEE transaction on Information Theory (2018

    Learning Neural Networks with Two Nonlinear Layers in Polynomial Time

    Full text link
    We give a polynomial-time algorithm for learning neural networks with one layer of sigmoids feeding into any Lipschitz, monotone activation function (e.g., sigmoid or ReLU). We make no assumptions on the structure of the network, and the algorithm succeeds with respect to {\em any} distribution on the unit ball in nn dimensions (hidden weight vectors also have unit norm). This is the first assumption-free, provably efficient algorithm for learning neural networks with two nonlinear layers. Our algorithm-- {\em Alphatron}-- is a simple, iterative update rule that combines isotonic regression with kernel methods. It outputs a hypothesis that yields efficient oracle access to interpretable features. It also suggests a new approach to Boolean learning problems via real-valued conditional-mean functions, sidestepping traditional hardness results from computational learning theory. Along these lines, we subsume and improve many longstanding results for PAC learning Boolean functions to the more general, real-valued setting of {\em probabilistic concepts}, a model that (unlike PAC learning) requires non-i.i.d. noise-tolerance.Comment: Changed title, included new result

    Lipschitz regularity of deep neural networks: analysis and efficient estimation

    Full text link
    Deep neural networks are notorious for being sensitive to small well-chosen perturbations, and estimating the regularity of such architectures is of utmost importance for safe and robust practical applications. In this paper, we investigate one of the key characteristics to assess the regularity of such methods: the Lipschitz constant of deep learning architectures. First, we show that, even for two layer neural networks, the exact computation of this quantity is NP-hard and state-of-art methods may significantly overestimate it. Then, we both extend and improve previous estimation methods by providing AutoLip, the first generic algorithm for upper bounding the Lipschitz constant of any automatically differentiable function. We provide a power method algorithm working with automatic differentiation, allowing efficient computations even on large convolutions. Second, for sequential neural networks, we propose an improved algorithm named SeqLip that takes advantage of the linear computation graph to split the computation per pair of consecutive layers. Third we propose heuristics on SeqLip in order to tackle very large networks. Our experiments show that SeqLip can significantly improve on the existing upper bounds. Finally, we provide an implementation of AutoLip in the PyTorch environment that may be used to better estimate the robustness of a given neural network to small perturbations or regularize it using more precise Lipschitz estimations.Comment: 12 pages, 3 figure

    Analytical bounds on the local Lipschitz constants of affine-ReLU functions

    Full text link
    In this paper, we determine analytical bounds on the local Lipschitz constants of of affine functions composed with rectified linear units (ReLUs). Affine-ReLU functions represent a widely used layer in deep neural networks, due to the fact that convolution, fully-connected, and normalization functions are all affine, and are often followed by a ReLU activation function. Using an analytical approach, we mathematically determine upper bounds on the local Lipschitz constant of an affine-ReLU function, show how these bounds can be combined to determine a bound on an entire network, and discuss how the bounds can be efficiently computed, even for larger layers and networks. We show several examples by applying our results to AlexNet, as well as several smaller networks based on the MNIST and CIFAR-10 datasets. The results show that our method produces tighter bounds than the standard conservative bound (i.e. the product of the spectral norms of the layers' linear matrices), especially for small perturbations.Comment: 14 pages, 5 figure

    Data-dependent Sample Complexity of Deep Neural Networks via Lipschitz Augmentation

    Full text link
    Existing Rademacher complexity bounds for neural networks rely only on norm control of the weight matrices and depend exponentially on depth via a product of the matrix norms. Lower bounds show that this exponential dependence on depth is unavoidable when no additional properties of the training data are considered. We suspect that this conundrum comes from the fact that these bounds depend on the training data only through the margin. In practice, many data-dependent techniques such as Batchnorm improve the generalization performance. For feedforward neural nets as well as RNNs, we obtain tighter Rademacher complexity bounds by considering additional data-dependent properties of the network: the norms of the hidden layers of the network, and the norms of the Jacobians of each layer with respect to all previous layers. Our bounds scale polynomially in depth when these empirical quantities are small, as is usually the case in practice. To obtain these bounds, we develop general tools for augmenting a sequence of functions to make their composition Lipschitz and then covering the augmented functions. Inspired by our theory, we directly regularize the network's Jacobians during training and empirically demonstrate that this improves test performance

    Principled Deep Neural Network Training through Linear Programming

    Full text link
    Deep Learning has received significant attention due to its impressive performance in many state-of-the-art learning tasks. Unfortunately, while very powerful, Deep Learning is not well understood theoretically and in particular only recently results for the complexity of training deep neural networks have been obtained. In this work we show that large classes of deep neural networks with various architectures (e.g., DNNs, CNNs, Binary Neural Networks, and ResNets), activation functions (e.g., ReLUs and leaky ReLUs), and loss functions (e.g., Hinge loss, Euclidean loss, etc) can be trained to near optimality with desired target accuracy using linear programming in time that is exponential in the input data and parameter space dimension and polynomial in the size of the data set; improvements of the dependence in the input dimension are known to be unlikely assuming P≠NPP\neq NP, and improving the dependence on the parameter space dimension remains open. In particular, we obtain polynomial time algorithms for training for a given fixed network architecture. Our work applies more broadly to empirical risk minimization problems which allows us to generalize various previous results and obtain new complexity results for previously unstudied architectures in the proper learning setting

    Are ResNets Provably Better than Linear Predictors?

    Full text link
    A residual network (or ResNet) is a standard deep neural net architecture, with state-of-the-art performance across numerous applications. The main premise of ResNets is that they allow the training of each layer to focus on fitting just the residual of the previous layer's output and the target output. Thus, we should expect that the trained network is no worse than what we can obtain if we remove the residual layers and train a shallower network instead. However, due to the non-convexity of the optimization problem, it is not at all clear that ResNets indeed achieve this behavior, rather than getting stuck at some arbitrarily poor local minimum. In this paper, we rigorously prove that arbitrarily deep, nonlinear residual units indeed exhibit this behavior, in the sense that the optimization landscape contains no local minima with value above what can be obtained with a linear predictor (namely a 1-layer network). Notably, we show this under minimal or no assumptions on the precise network architecture, data distribution, or loss function used. We also provide a quantitative analysis of approximate stationary points for this problem. Finally, we show that with a certain tweak to the architecture, training the network with standard stochastic gradient descent achieves an objective value close or better than any linear predictor.Comment: Comparison to previous arXiv version: Minor changes to incorporate comments of NIPS 2018 reviewers (main results are unaffected

    Lipschitz constant estimation of Neural Networks via sparse polynomial optimization

    Full text link
    We introduce LiPopt, a polynomial optimization framework for computing increasingly tighter upper bounds on the Lipschitz constant of neural networks. The underlying optimization problems boil down to either linear (LP) or semidefinite (SDP) programming. We show how to use the sparse connectivity of a network, to significantly reduce the complexity of computation. This is specially useful for convolutional as well as pruned neural networks. We conduct experiments on networks with random weights as well as networks trained on MNIST, showing that in the particular case of the ℓ∞\ell_\infty-Lipschitz constant, our approach yields superior estimates, compared to baselines available in the literature.Comment: Published as a conference paper in ICLR2020, originally submitted in September 25 2019 and available at https://openreview.net/forum?id=rJe4_xSFD

    Generalization bounds for deep convolutional neural networks

    Full text link
    We prove bounds on the generalization error of convolutional networks. The bounds are in terms of the training loss, the number of parameters, the Lipschitz constant of the loss and the distance from the weights to the initial weights. They are independent of the number of pixels in the input, and the height and width of hidden feature maps. We present experiments using CIFAR-10 with varying hyperparameters of a deep convolutional network, comparing our bounds with practical generalization gaps.Comment: Published as a conference paper at ICLR 202

    Eigenvalue Decay Implies Polynomial-Time Learnability for Neural Networks

    Full text link
    We consider the problem of learning function classes computed by neural networks with various activations (e.g. ReLU or Sigmoid), a task believed to be computationally intractable in the worst-case. A major open problem is to understand the minimal assumptions under which these classes admit provably efficient algorithms. In this work we show that a natural distributional assumption corresponding to {\em eigenvalue decay} of the Gram matrix yields polynomial-time algorithms in the non-realizable setting for expressive classes of networks (e.g. feed-forward networks of ReLUs). We make no assumptions on the structure of the network or the labels. Given sufficiently-strong polynomial eigenvalue decay, we obtain {\em fully}-polynomial time algorithms in {\em all} the relevant parameters with respect to square-loss. Milder decay assumptions also lead to improved algorithms. This is the first purely distributional assumption that leads to polynomial-time algorithms for networks of ReLUs, even with one hidden layer. Further, unlike prior distributional assumptions (e.g., the marginal distribution is Gaussian), eigenvalue decay has been observed in practice on common data sets
    • …
    corecore