4,308 research outputs found

    Non-polynomial Worst-Case Analysis of Recursive Programs

    Full text link
    We study the problem of developing efficient approaches for proving worst-case bounds of non-deterministic recursive programs. Ranking functions are sound and complete for proving termination and worst-case bounds of nonrecursive programs. First, we apply ranking functions to recursion, resulting in measure functions. We show that measure functions provide a sound and complete approach to prove worst-case bounds of non-deterministic recursive programs. Our second contribution is the synthesis of measure functions in nonpolynomial forms. We show that non-polynomial measure functions with logarithm and exponentiation can be synthesized through abstraction of logarithmic or exponentiation terms, Farkas' Lemma, and Handelman's Theorem using linear programming. While previous methods obtain worst-case polynomial bounds, our approach can synthesize bounds of the form O(nlogn)\mathcal{O}(n\log n) as well as O(nr)\mathcal{O}(n^r) where rr is not an integer. We present experimental results to demonstrate that our approach can obtain efficiently worst-case bounds of classical recursive algorithms such as (i) Merge-Sort, the divide-and-conquer algorithm for the Closest-Pair problem, where we obtain O(nlogn)\mathcal{O}(n \log n) worst-case bound, and (ii) Karatsuba's algorithm for polynomial multiplication and Strassen's algorithm for matrix multiplication, where we obtain O(nr)\mathcal{O}(n^r) bound such that rr is not an integer and close to the best-known bounds for the respective algorithms.Comment: 54 Pages, Full Version to CAV 201

    On Sharing, Memoization, and Polynomial Time (Long Version)

    Get PDF
    We study how the adoption of an evaluation mechanism with sharing and memoization impacts the class of functions which can be computed in polynomial time. We first show how a natural cost model in which lookup for an already computed value has no cost is indeed invariant. As a corollary, we then prove that the most general notion of ramified recurrence is sound for polynomial time, this way settling an open problem in implicit computational complexity

    Bounded Expectations: Resource Analysis for Probabilistic Programs

    Full text link
    This paper presents a new static analysis for deriving upper bounds on the expected resource consumption of probabilistic programs. The analysis is fully automatic and derives symbolic bounds that are multivariate polynomials of the inputs. The new technique combines manual state-of-the-art reasoning techniques for probabilistic programs with an effective method for automatic resource-bound analysis of deterministic programs. It can be seen as both, an extension of automatic amortized resource analysis (AARA) to probabilistic programs and an automation of manual reasoning for probabilistic programs that is based on weakest preconditions. As a result, bound inference can be reduced to off-the-shelf LP solving in many cases and automatically-derived bounds can be interactively extended with standard program logics if the automation fails. Building on existing work, the soundness of the analysis is proved with respect to an operational semantics that is based on Markov decision processes. The effectiveness of the technique is demonstrated with a prototype implementation that is used to automatically analyze 39 challenging probabilistic programs and randomized algorithms. Experimental results indicate that the derived constant factors in the bounds are very precise and even optimal for many programs

    The Hardness of Finding Linear Ranking Functions for Lasso Programs

    Full text link
    Finding whether a linear-constraint loop has a linear ranking function is an important key to understanding the loop behavior, proving its termination and establishing iteration bounds. If no preconditions are provided, the decision problem is known to be in coNP when variables range over the integers and in PTIME for the rational numbers, or real numbers. Here we show that deciding whether a linear-constraint loop with a precondition, specifically with partially-specified input, has a linear ranking function is EXPSPACE-hard over the integers, and PSPACE-hard over the rationals. The precise complexity of these decision problems is yet unknown. The EXPSPACE lower bound is derived from the reachability problem for Petri nets (equivalently, Vector Addition Systems), and possibly indicates an even stronger lower bound (subject to open problems in VAS theory). The lower bound for the rationals follows from a novel simulation of Boolean programs. Lower bounds are also given for the problem of deciding if a linear ranking-function supported by a particular form of inductive invariant exists. For loops over integers, the problem is PSPACE-hard for convex polyhedral invariants and EXPSPACE-hard for downward-closed sets of natural numbers as invariants.Comment: In Proceedings GandALF 2014, arXiv:1408.5560. I thank the organizers of the Dagstuhl Seminar 14141, "Reachability Problems for Infinite-State Systems", for the opportunity to present an early draft of this wor

    A Survey on Continuous Time Computations

    Full text link
    We provide an overview of theories of continuous time computation. These theories allow us to understand both the hardness of questions related to continuous time dynamical systems and the computational power of continuous time analog models. We survey the existing models, summarizing results, and point to relevant references in the literature

    An Experiment in Ping-Pong Protocol Verification by Nondeterministic Pushdown Automata

    Get PDF
    An experiment is described that confirms the security of a well-studied class of cryptographic protocols (Dolev-Yao intruder model) can be verified by two-way nondeterministic pushdown automata (2NPDA). A nondeterministic pushdown program checks whether the intersection of a regular language (the protocol to verify) and a given Dyck language containing all canceling words is empty. If it is not, an intruder can reveal secret messages sent between trusted users. The verification is guaranteed to terminate in cubic time at most on a 2NPDA-simulator. The interpretive approach used in this experiment simplifies the verification, by separating the nondeterministic pushdown logic and program control, and makes it more predictable. We describe the interpretive approach and the known transformational solutions, and show they share interesting features. Also noteworthy is how abstract results from automata theory can solve practical problems by programming language means.Comment: In Proceedings MARS/VPT 2018, arXiv:1803.0866

    Invariant Generation through Strategy Iteration in Succinctly Represented Control Flow Graphs

    Full text link
    We consider the problem of computing numerical invariants of programs, for instance bounds on the values of numerical program variables. More specifically, we study the problem of performing static analysis by abstract interpretation using template linear constraint domains. Such invariants can be obtained by Kleene iterations that are, in order to guarantee termination, accelerated by widening operators. In many cases, however, applying this form of extrapolation leads to invariants that are weaker than the strongest inductive invariant that can be expressed within the abstract domain in use. Another well-known source of imprecision of traditional abstract interpretation techniques stems from their use of join operators at merge nodes in the control flow graph. The mentioned weaknesses may prevent these methods from proving safety properties. The technique we develop in this article addresses both of these issues: contrary to Kleene iterations accelerated by widening operators, it is guaranteed to yield the strongest inductive invariant that can be expressed within the template linear constraint domain in use. It also eschews join operators by distinguishing all paths of loop-free code segments. Formally speaking, our technique computes the least fixpoint within a given template linear constraint domain of a transition relation that is succinctly expressed as an existentially quantified linear real arithmetic formula. In contrast to previously published techniques that rely on quantifier elimination, our algorithm is proved to have optimal complexity: we prove that the decision problem associated with our fixpoint problem is in the second level of the polynomial-time hierarchy.Comment: 35 pages, conference version published at ESOP 2011, this version is a CoRR version of our submission to Logical Methods in Computer Scienc

    Strong Invariants Are Hard: On the Hardness of Strongest Polynomial Invariants for (Probabilistic) Programs

    Full text link
    We show that computing the strongest polynomial invariant for single-path loops with polynomial assignments is at least as hard as the Skolem problem, a famous problem whose decidability has been open for almost a century. While the strongest polynomial invariants are computable for affine loops, for polynomial loops the problem remained wide open. As an intermediate result of independent interest, we prove that reachability for discrete polynomial dynamical systems is Skolem-hard as well. Furthermore, we generalize the notion of invariant ideals and introduce moment invariant ideals for probabilistic programs. With this tool, we further show that the strongest polynomial moment invariant is (i) uncomputable, for probabilistic loops with branching statements, and (ii) Skolem-hard to compute for polynomial probabilistic loops without branching statements. Finally, we identify a class of probabilistic loops for which the strongest polynomial moment invariant is computable and provide an algorithm for it
    corecore