11,047 research outputs found

    Jacobian hits circuits: Hitting-sets, lower bounds for depth-D occur-k formulas & depth-3 transcendence degree-k circuits

    Full text link
    We present a single, common tool to strictly subsume all known cases of polynomial time blackbox polynomial identity testing (PIT) that have been hitherto solved using diverse tools and techniques. In particular, we show that polynomial time hitting-set generators for identity testing of the two seemingly different and well studied models - depth-3 circuits with bounded top fanin, and constant-depth constant-read multilinear formulas - can be constructed using one common algebraic-geometry theme: Jacobian captures algebraic independence. By exploiting the Jacobian, we design the first efficient hitting-set generators for broad generalizations of the above-mentioned models, namely: (1) depth-3 (Sigma-Pi-Sigma) circuits with constant transcendence degree of the polynomials computed by the product gates (no bounded top fanin restriction), and (2) constant-depth constant-occur formulas (no multilinear restriction). Constant-occur of a variable, as we define it, is a much more general concept than constant-read. Also, earlier work on the latter model assumed that the formula is multilinear. Thus, our work goes further beyond the results obtained by Saxena & Seshadhri (STOC 2011), Saraf & Volkovich (STOC 2011), Anderson et al. (CCC 2011), Beecken et al. (ICALP 2011) and Grenet et al. (FSTTCS 2011), and brings them under one unifying technique. In addition, using the same Jacobian based approach, we prove exponential lower bounds for the immanant (which includes permanent and determinant) on the same depth-3 and depth-4 models for which we give efficient PIT algorithms. Our results reinforce the intimate connection between identity testing and lower bounds by exhibiting a concrete mathematical tool - the Jacobian - that is equally effective in solving both the problems on certain interesting and previously well-investigated (but not well understood) models of computation

    Cyclotomic Identity Testing and Applications

    Full text link
    We consider the cyclotomic identity testing problem: given a polynomial f(x1,…,xk)f(x_1,\ldots,x_k), decide whether f(ζne1,…,ζnek)f(\zeta_n^{e_1},\ldots,\zeta_n^{e_k}) is zero, for ζn=e2πi/n\zeta_n = e^{2\pi i/n} a primitive complex nn-th root of unity and integers e1,…,eke_1,\ldots,e_k. We assume that nn and e1,…,eke_1,\ldots,e_k are represented in binary and consider several versions of the problem, according to the representation of ff. For the case that ff is given by an algebraic circuit we give a randomized polynomial-time algorithm with two-sided errors, showing that the problem lies in BPP. In case ff is given by a circuit of polynomially bounded syntactic degree, we give a randomized algorithm with two-sided errors that runs in poly-logarithmic parallel time, showing that the problem lies in BPNC. In case ff is given by a depth-2 ΣΠ\Sigma\Pi circuit (or, equivalently, as a list of monomials), we show that the cyclotomic identity testing problem lies in NC. Under the generalised Riemann hypothesis, we are able to extend this approach to obtain a polynomial-time algorithm also for a very simple subclass of depth-3 ΣΠΣ\Sigma\Pi\Sigma circuits. We complement this last result by showing that for a more general class of depth-3 ΣΠΣ\Sigma\Pi\Sigma circuits, a polynomial-time algorithm for the cyclotomic identity testing problem would yield a sub-exponential-time algorithm for polynomial identity testing. Finally, we use cyclotomic identity testing to give a new proof that equality of compressed strings, i.e., strings presented using context-free grammars, can be decided in coRNC: randomized NC with one-sided errors

    Algebraic Independence and Blackbox Identity Testing

    Full text link
    Algebraic independence is an advanced notion in commutative algebra that generalizes independence of linear polynomials to higher degree. Polynomials {f_1, ..., f_m} \subset \F[x_1, ..., x_n] are called algebraically independent if there is no non-zero polynomial F such that F(f_1, ..., f_m) = 0. The transcendence degree, trdeg{f_1, ..., f_m}, is the maximal number r of algebraically independent polynomials in the set. In this paper we design blackbox and efficient linear maps \phi that reduce the number of variables from n to r but maintain trdeg{\phi(f_i)}_i = r, assuming f_i's sparse and small r. We apply these fundamental maps to solve several cases of blackbox identity testing: (1) Given a polynomial-degree circuit C and sparse polynomials f_1, ..., f_m with trdeg r, we can test blackbox D := C(f_1, ..., f_m) for zeroness in poly(size(D))^r time. (2) Define a spsp_\delta(k,s,n) circuit C to be of the form \sum_{i=1}^k \prod_{j=1}^s f_{i,j}, where f_{i,j} are sparse n-variate polynomials of degree at most \delta. For k = 2 we give a poly(sn\delta)^{\delta^2} time blackbox identity test. (3) For a general depth-4 circuit we define a notion of rank. Assuming there is a rank bound R for minimal simple spsp_\delta(k,s,n) identities, we give a poly(snR\delta)^{Rk\delta^2} time blackbox identity test for spsp_\delta(k,s,n) circuits. This partially generalizes the state of the art of depth-3 to depth-4 circuits. The notion of trdeg works best with large or zero characteristic, but we also give versions of our results for arbitrary fields.Comment: 32 pages, preliminary versio

    Hardness vs Randomness for Bounded Depth Arithmetic Circuits

    Get PDF
    In this paper, we study the question of hardness-randomness tradeoffs for bounded depth arithmetic circuits. We show that if there is a family of explicit polynomials {f_n}, where f_n is of degree O(log^2n/log^2 log n) in n variables such that f_n cannot be computed by a depth Delta arithmetic circuits of size poly(n), then there is a deterministic sub-exponential time algorithm for polynomial identity testing of arithmetic circuits of depth Delta-5. This is incomparable to a beautiful result of Dvir et al.[SICOMP, 2009], where they showed that super-polynomial lower bounds for depth Delta circuits for any explicit family of polynomials (of potentially high degree) implies sub-exponential time deterministic PIT for depth Delta-5 circuits of bounded individual degree. Thus, we remove the "bounded individual degree" condition in the work of Dvir et al. at the cost of strengthening the hardness assumption to hold for polynomials of low degree. The key technical ingredient of our proof is the following property of roots of polynomials computable by a bounded depth arithmetic circuit : if f(x_1, x_2, ..., x_n) and P(x_1, x_2, ..., x_n, y) are polynomials of degree d and r respectively, such that P can be computed by a circuit of size s and depth Delta and P(x_1, x_2, ..., x_n, f) equiv 0, then, f can be computed by a circuit of size poly(n, s, r, d^{O(sqrt{d})}) and depth Delta + 3. In comparison, Dvir et al. showed that f can be computed by a circuit of depth Delta + 3 and size poly(n, s, r, d^{t}), where t is the degree of P in y. Thus, the size upper bound in the work of Dvir et al. is non-trivial when t is small but d could be large, whereas our size upper bound is non-trivial when d is small, but t could be large

    Deterministic Identity Testing Paradigms for Bounded Top-Fanin Depth-4 Circuits

    Get PDF
    Polynomial Identity Testing (PIT) is a fundamental computational problem. The famous depth-4 reduction (Agrawal & Vinay, FOCS\u2708) has made PIT for depth-4 circuits, an enticing pursuit. The largely open special-cases of sum-product-of-sum-of-univariates (?^[k] ? ? ?) and sum-product-of-constant-degree-polynomials (?^[k] ? ? ?^[?]), for constants k, ?, have been a source of many great ideas in the last two decades. For eg. depth-3 ideas (Dvir & Shpilka, STOC\u2705; Kayal & Saxena, CCC\u2706; Saxena & Seshadhri, FOCS\u2710, STOC\u2711); depth-4 ideas (Beecken, Mittmann & Saxena, ICALP\u2711; Saha,Saxena & Saptharishi, Comput.Compl.\u2713; Forbes, FOCS\u2715; Kumar & Saraf, CCC\u2716); geometric Sylvester-Gallai ideas (Kayal & Saraf, FOCS\u2709; Shpilka, STOC\u2719; Peleg & Shpilka, CCC\u2720, STOC\u2721). We solve two of the basic underlying open problems in this work. We give the first polynomial-time PIT for ?^[k] ? ? ?. Further, we give the first quasipolynomial time blackbox PIT for both ?^[k] ? ? ? and ?^[k] ? ? ?^[?]. No subexponential time algorithm was known prior to this work (even if k = ? = 3). A key technical ingredient in all the three algorithms is how the logarithmic derivative, and its power-series, modify the top ?-gate to ?

    Blackbox identity testing for bounded top fanin depth-3 circuits: the field doesn't matter

    Full text link
    Let C be a depth-3 circuit with n variables, degree d and top fanin k (called sps(k,d,n) circuits) over base field F. It is a major open problem to design a deterministic polynomial time blackbox algorithm that tests if C is identically zero. Klivans & Spielman (STOC 2001) observed that the problem is open even when k is a constant. This case has been subjected to a serious study over the past few years, starting from the work of Dvir & Shpilka (STOC 2005). We give the first polynomial time blackbox algorithm for this problem. Our algorithm runs in time poly(nd^k), regardless of the base field. The only field for which polynomial time algorithms were previously known is F=Q (Kayal & Saraf, FOCS 2009, and Saxena & Seshadhri, FOCS 2010). This is the first blackbox algorithm for depth-3 circuits that does not use the rank based approaches of Karnin & Shpilka (CCC 2008). We prove an important tool for the study of depth-3 identities. We design a blackbox polynomial time transformation that reduces the number of variables in a sps(k,d,n) circuit to k variables, but preserves the identity structure.Comment: 14 pages, 1 figure, preliminary versio
    • …
    corecore