5,447 research outputs found

    Tutte's dichromate for signed graphs

    Full text link
    We introduce the ``trivariate Tutte polynomial" of a signed graph as an invariant of signed graphs up to vertex switching that contains among its evaluations the number of proper colorings and the number of nowhere-zero flows. In this, it parallels the Tutte polynomial of a graph, which contains the chromatic polynomial and flow polynomial as specializations. The number of nowhere-zero tensions (for signed graphs they are not simply related to proper colorings as they are for graphs) is given in terms of evaluations of the trivariate Tutte polynomial at two distinct points. Interestingly, the bivariate dichromatic polynomial of a biased graph, shown by Zaslavsky to share many similar properties with the Tutte polynomial of a graph, does not in general yield the number of nowhere-zero flows of a signed graph. Therefore the ``dichromate" for signed graphs (our trivariate Tutte polynomial) differs from the dichromatic polynomial (the rank-size generating function). The trivariate Tutte polynomial of a signed graph can be extended to an invariant of ordered pairs of matroids on a common ground set -- for a signed graph, the cycle matroid of its underlying graph and its frame matroid form the relevant pair of matroids. This invariant is the canonically defined Tutte polynomial of matroid pairs on a common ground set in the sense of a recent paper of Krajewski, Moffatt and Tanasa, and was first studied by Welsh and Kayibi as a four-variable linking polynomial of a matroid pair on a common ground set.Comment: 53 pp. 9 figure

    On the rooted Tutte polynomial

    Get PDF
    The Tutte polynomial is a generalization of the chromatic polynomial of graph colorings. Here we present an extension called the rooted Tutte polynomial, which is defined on a graph where one or more vertices are colored with prescribed colors. We establish a number of results pertaining to the rooted Tutte polynomial, including a duality relation in the case that all roots reside around a single face of a planar graph. The connection with the Potts model is also reviewed.Comment: plain latex, 14 pages, 2 figs., to appear in Annales de l'Institut Fourier (1999

    Chromatic Polynomials and Orbital Chromatic Polynomials and their Roots

    Get PDF
    The chromatic polynomial of a graph, is a polynomial that when evaluated at a positive integer k, is the number of proper k colorings of the graph. We can then find the orbital chromatic polynomial of a graph and a group of automorphisms of the graph, which is a polynomial whose value at a positive integer k is the number of orbits of k-colorings of a graph when acted upon by the group. By considering the roots of the orbital chromatic and chromatic polynomials, the similarities and differences of these polynomials is studied. Specifically we work toward proving a conjecture concerning the gap between the real roots of the chromatic polynomial and the real roots of the orbital chromatic polynomial

    On the degree-chromatic polynomial of a tree

    Full text link
    The degree chromatic polynomial Pm(G,k)Pm(G,k) of a graph GG counts the number of kk-colorings in which no vertex has mm adjacent vertices of its same color. We prove Humpert and Martin's conjecture on the leading terms of the degree chromatic polynomial of a tree.Comment: 3 page

    The canonical Tutte polynomial for signed graphs

    Get PDF
    We construct a new polynomial invariant for signed graphs, the trivariate Tutte polynomial, which contains among its evaluations the number of proper colorings and the number of nowhere-zero flows. In this, it parallels the Tutte polynomial of a graph, which contains the chromatic polynomial and flow polynomial as specializations. While the Tutte polynomial of a graph is equivalently defined as the dichromatic polynomial or Whitney rank polynomial, the dichromatic polynomial of a signed graph (defined more widely for biased graphs by Zaslavsky) does not, by contrast, give the number of nowhere-zero flows as an evaluation in general. The trivariate Tutte polynomial contains Zaslavsky's dichromatic polynomial as a specialization. Furthermore, the trivariate Tutte polynomial gives as an evaluation the number of proper colorings of a signed graph under a more general sense of signed graph coloring in which colors are elements of an arbitrary finite set equipped with an involution.Peer ReviewedPostprint (published version
    • …
    corecore