161,628 research outputs found

    Central factorials under the Kontorovich-Lebedev transform of polynomials

    Full text link
    We show that slight modifications of the Kontorovich-Lebedev transform lead to an automorphism of the vector space of polynomials. This circumstance along with the Mellin transformation property of the modified Bessel functions perform the passage of monomials to central factorial polynomials. A special attention is driven to the polynomial sequences whose KL-transform is the canonical sequence, which will be fully characterized. Finally, new identities between the central factorials and the Euler polynomials are found.Comment: also available at http://cmup.fc.up.pt/cmup/ since the 2nd August 201

    Computer Algebra meets Finite Elements: an Efficient Implementation for Maxwell's Equations

    Full text link
    We consider the numerical discretization of the time-domain Maxwell's equations with an energy-conserving discontinuous Galerkin finite element formulation. This particular formulation allows for higher order approximations of the electric and magnetic field. Special emphasis is placed on an efficient implementation which is achieved by taking advantage of recurrence properties and the tensor-product structure of the chosen shape functions. These recurrences have been derived symbolically with computer algebra methods reminiscent of the holonomic systems approach.Comment: 16 pages, 1 figure, 1 table; Springer Wien, ISBN 978-3-7091-0793-

    Parafermionic polynomials, Selberg integrals and three-point correlation function in parafermionic Liouville field theory

    Full text link
    In this paper we consider parafermionic Liouville field theory. We study integral representations of three-point correlation functions and develop a method allowing us to compute them exactly. In particular, we evaluate the generalization of Selberg integral obtained by insertion of parafermionic polynomial. Our result is justified by different approach based on dual representation of parafermionic Liouville field theory described by three-exponential model

    Systems of orthogonal polynomials defined by hypergeometric type equations with application to quantum mechanics

    Full text link
    A hypergeometric type equation satisfying certain conditions defines either a finite or an infinite system of orthogonal polynomials. We present in a unified and explicit way all these systems of orthogonal polynomials, the associated special functions and the corresponding raising/lowering operators. The considered equations are directly related to some Schrodinger type equations (Poschl-Teller, Scarf, Morse, etc), and the defined special functions are related to the corresponding bound-state eigenfunctions.Comment: Additional results available at http://fpcm5.fizica.unibuc.ro/~ncotfa

    Spin networks and SL(2,C)-Character varieties

    Full text link
    Denote the free group on 2 letters by F_2 and the SL(2,C)-representation variety of F_2 by R=Hom(F_2,SL(2,C)). The group SL(2,C) acts on R by conjugation. We construct an isomorphism between the coordinate ring C[SL(2,C)] and the ring of matrix coefficients, providing an additive basis of C[R]^SL(2,C) in terms of spin networks. Using a graphical calculus, we determine the symmetries and multiplicative structure of this basis. This gives a canonical description of the regular functions on the SL(2,C)-character variety of F_2 and a new proof of a classical result of Fricke, Klein, and Vogt.Comment: Updated historical treatment of the subject. Figures drawn with PGF/TikZ; Handbook of Teichmuller Theory II, A. Papadopoulos (ed), EMS Publishing House, Zurich, 200
    • …
    corecore